10 research outputs found

    Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine

    Get PDF
    Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102107 pfu.mL1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and under the scope of the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). Franklin L. Nobrega and Ana Rita Costa acknowledge FCT for grants SFRH/BD/86462/2012 and SFRH/BPD/94648/2013, respectively. Melvin F. Siliakus acknowledges funding from the Biobased Ecologically Balanced Sustainable Industrial Chemistry (BE-BASIC) foundation. Electron microscopy work was performed at the Wageningen Electron Microscopy Centre (WEMC) of Wageningen University

    Thermal Inactivation of the Heat-Resistant Pathogens Salmonella Senftenberg 775W and Escherichia coli AW1.7 in Whey Concentrate

    Get PDF
    Pasteurized whey concentrate is used as a base for the production of ingredients for various food products. Whey concentrate (30% dry matter) was used to assess the thermal inactivation of Salmonella (S.) enterica serovar Senftenberg 775W (DSM 10062) and Escherichia (E.) coli AW1.7 (DSM 108612) strains in a pilot-scale pasteurizer mimicking industrial heat processing. These strains, chosen for their exceptional heat resistance, represent the most challenging scenario for pasteurization within the context of S. enterica and E. coli. Heat resistance was tested at temperatures of 56, 60, 64, 68, and 72 °C at an average holding time of 17.5 s. These exceptionally heat-resistant strains showed a relatively low reduction in numbers of between 0 and 4.2 log10 CFU/mL at lower inactivation temperatures of ≤68 °C. A reduction of at least 5 log10 CFU/mL, as required for adequate heat processing, was achieved for both species after heating at 72 °C for 17.5 s. This study shows that whey concentrate should not lead to contamination of food ingredients and can be considered safe after pasteurization at 72 °C for at least 17.5 s with respect to the pathogens tested

    Nicht-thermische Phagenreduktion in Molke mittels Crossflow-Membranfiltration und molekulare Schnellnachweissysteme für extrem thermoresistente Phagen - Aktuelle Forschungsansätze zur Minimierung der Phagenbelastung in Molkereien

    No full text
    In einem gemeinsamen Forschungsprojekt der Universität Hohenheim, Institut für Lebensmittelwissenschaft und Biotechnologie, Fachgebiet Milchwissenschaft und -technologie und des Max Rubner-lnstituts in Kiel, Institut für Mikrobiologie und Biotechnologie, wurde ein nicht-thermisches Verfahren zur Reduktion von Bakteriophagen in Käsemolke erforscht und ein Schnellnachweissystem zur Detektion thermoresistenter Phagen in Molke entwickelt

    Emerging Technologies for Gut Microbiome Research

    No full text
    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies

    Production of Phage Therapeutics and Formulations: Innovative Approaches

    No full text
    corecore