1,078 research outputs found

    Relativistic continuum-continuum coupling in the dissociation of halo nuclei

    Full text link
    A relativistic coupled-channels theory for the calculation of dissociation cross sections of halo nuclei is developed. A comparison with non-relativistic models is done for the dissociation of 8^{8}B projectiles. It is shown that neglecting relativistic effects leads to seizable inaccuracies in the extraction of the astrophysical S-factor for the proton+beryllium radiative capture reaction.Comment: 4 pages, 2 figures, version accepted for publication at Physics Review Letter

    Theoretical photo-disintegration of 16^{16}O

    Full text link
    The photodisintegration of 16^{16}O is predicted to be dominated by EE2 excitation in the vicinity of the α\alpha-particle threshold. The reaction rates of 12^{12}C(α\alpha,γ\gamma)16^{16}O are expected to be determined from this reaction.Comment: 3 pages, 2 figures, Proceedings of Nuclei in the Cosmos (NIC-XIV). 19-24 June 2016, Niigata, Japa

    Resonances and the thermonuclear reaction rate

    Full text link
    We present an approximate analytic expression for thermonuclear reaction rate of charged particles when the cross section contains a single narrow or wide resonance described by a Breit-Wigner shape. The resulting expression is uniformly valid as the effective energy and resonance energy coalesce. We use our expressions to calculate the reaction rate for 12^{12}C(p,Îł\gamma)13^{13}N.Comment: 4 pages, 1 figure, presented at the VIII International Conference on Nucleus-Nucleus in Moscow (Russia) on June 17-21, 200

    Study of the 12C+12C fusion reactions near the Gamow energy

    Get PDF
    The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let

    Solving the two-center nuclear shell-model problem with arbitrarily-orientated deformed potentials

    Full text link
    A general new technique to solve the two-center problem with arbitrarily-orientated deformed realistic potentials is demonstrated, which is based on the powerful potential separable expansion method. As an example, molecular single-particle spectra for 12^{12}C + 12^{12}C →\to 24^{24}Mg are calculated using deformed Woods-Saxon potentials. These clearly show that non-axial symmetric configurations play a crucial role in molecular resonances observed in reaction processes for this system at low energy

    Correspondence between W. J. Kerr, A. E. Stene, F. M. Rolfs, L. H. Bailey, and Charles F. Curtiss

    Get PDF
    Correspondence concerning a position in Horticulture Botany at Utah Agricultural College

    Two important cotton diseases and their control

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Thermal neutron induced (n,p) and (n,alpha) reactions on 37Ar

    Full text link
    The 37Ar(n_th,alpha)34S and 37Ar(n_th,p)37Cl reactions were studied at the high flux reactor of the ILL in Grenoble. For the 37Ar(n_th,alpha_0) and 37Ar(n_th,p) reaction cross sections, values of (1070+/-80)b and (37+/-4)b, respectively, were obtained. Both values are about a factor 2 smaller than results of older measurements. The observed suppression of the 37(n_th,alpha_1) transition could be verified from theoretical considerations. Finally, evidence was found for the two-step 37Ar(n_th,gamma-alpha) process.Comment: 11 pages, 5 figures, accepted for publication in Nuclear Physics

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy

    Full text link
    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S-factor to solar energies
    • …
    corecore