64 research outputs found

    Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2

    Get PDF
    Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean

    MRI of intact plants

    Get PDF
    Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transport in the stem, e.g., as a function of environmental (stress) conditions. Non-spatially resolved portable NMR is becoming available to study leaf water content and distribution of water in different (sub-cellular) compartments. These parameters directly relate to stomatal water conductance, CO2 uptake, and photosynthesis. MRI applied on plants is not a straight forward extension of the methods discussed for (bio)medical MRI. This educational review explains the basic physical principles of plant MRI, with a focus on the spatial resolution, factors that determine the spatial resolution, and its unique information for applications in plant water relations that directly relate to plant photosynthetic activity

    Essential omega‐3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean

    Get PDF
    Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web

    Mechanics of mystery

    No full text

    Na-23 NMR microimaging: a tool for non-invasive monitoring of sodium distribution in living plants

    No full text
    Detailed knowledge of the sodium (Na) distribution within the tissues of highly salt-tolerant Australian native species could help in understanding the physiological adaptations of salt-tolerance or salt-sensitive plants. Na-23 nuclear magnetic resonance (NMR) microimaging is presented as a tool to achieve this goal. Maps of the Na distribution in stem tissue were obtained with an in-plane resolution of approximately 125 mum and a slice thickness of 4 mm. Simultaneously recorded high resolution H-1 NMR images showing water distribution in the same slice with 31 mum in-plane resolution and 1 mm slice thickness, were used as an anatomical reference together with optical micrographs that were taken immediately after the NMR experiments were completed. To quantify the Na concentration, reference capillaries with known NaCl concentrations were located in the NMR probe together with the plant sample. Average concentration values calculated from signal intensities in the tissue and the capillaries were compared with concentration values obtained from atomic emission photometry and optical microscopy performed on digested stem sections harvested immediately after NMR experiments. Results showed that Na-23 NMR microimaging has great potential for physiological studies of salt stress at the macroscopic level, and may become a unique tool for diagnosing salt tolerance and sensitivity

    Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi

    Get PDF
    A combined increase in seawater [CO(2)] and [H(+)] was recently shown to induce a shift from photosynthetic HCO(3) (−) to CO(2) uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low‐ and high‐light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(−1)) and pH (8.15, 7.85) and directly measured cellular O(2), CO(2) and HCO(3) (−) fluxes under these conditions. Exposure to increased [CO(2)] had little effect on the photosynthetic fluxes, whereas increased [H(+)] led to a significant decline in HCO(3) (−) uptake. Low‐light acclimated cells overcompensated for the inhibition of HCO(3) (−) uptake by increasing CO(2) uptake. High‐light acclimated cells, relying on higher proportions of HCO(3) (−) uptake, could not increase CO(2) uptake and photosynthetic O(2) evolution consequently became carbon‐limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+)] rather than by [CO(2)]. The impaired HCO(3) (−) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA‐dependent decrease in photosynthesis observed in high‐light grown phytoplankton

    Ocean Acidification Affects Redox-Balance and Ion-Homeostasis in the Life-Cycle Stages of Emiliania huxleyi

    Get PDF
    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and noncalcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 Âľmol photons m-2 s-1). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists
    • …
    corecore