1,297 research outputs found

    Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    Full text link
    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.Comment: 8 pages 4 figure

    Doripenem in hospital infections: a focus on nosocomial pneumonia, complicated intra-abdominal infections, and complicated urinary tract infections

    Get PDF
    Doripenem is the latest carbapenem on the market to date. Although not an antibiotic in a new class, it offers a glimmer of hope in combating serious infections secondary to multidrug-resistant Gram-negative bacteria when we have not seen a new class of antibacterial, particularly for Gram-negative bacteria, for more than 10 years. In vitro, doripenem exhibits a broad spectrum of activity against Gram-positive and Gram-negative bacteria, including extended-spectrum β-lactamase (ESBL) and Amp-C β-lactamase producing Enterobacteriaceae and anaerobes. Doripenem also exhibits better in vitro activity against Pseudomonas aeruginosa compared to other anti-pseudomonal carbapenems. It combines the desirable activities of both imipenem and meropenem. It has similar activity to imipenem against Gram-positive pathogens and has the antimicrobial spectrum of meropenem against Gram-negative organisms. Several randomized clinical trials have demonstrated that doripenem is non-inferior to meropenem, imipenem, piperacillin/tazobactam, or levofloxacin in its efficacy and safety profile in treating a wide range of serious bacterial infections including intra-abdominal infection, complicated urinary tract infection, and nosocomial pneumonia. Due to its wide spectrum of activity and good safety profile it is susceptible to misuse leading to increasing rates of resistance. Judicious use should be considered when using doripenem as a first-line agent or drug of choice for serious infections. Doripenem is a well-tolerated drug with common adverse effects including headache, nausea and diarrhea. Caution should be used in patients with hypersensitivity to carbapenems and adverse reactions to β-lactam agents. Dosage adjustment is needed for patients with renal impairment. Doripenem has demonstrated economic and clinical benefits. It has been shown to reduce hospital length of stay and duration of mechanical ventilation for intensive care unit (ICU) patients. Therefore, doripenem is a welcome addition to our limited armamentarium of antibiotics available to treat serious bacterial infections in hospitalized patients

    Statements on the Safety of Permanent Soft Tissue Fillers in Europe

    Get PDF
    Increasing reported complications associated with permanent soft tissue fillers have led the national medical societies and governmental institutes in Europe to send out warnings regarding their use. Regulation and legislation for the introduction of new products and the use of existing products are necessary to guarantee patient safety

    Strangeness Content in the Nucleon

    Get PDF
    I review recent studies of strangeness content in the nucleon pertaining to the flavor-singlet gA0g_A^0, the sˉs\bar{s}s matrix element and the strangeness electric and magnetic form factors GEs(q2)G_E^s(q^2) and GMs(q2)G_M^s(q^2), based on lattice QCD calculations. I shall also discuss the relevance of incorporating the strangeness content in nuclei in regard to strange baryon-antibaryon productions from proton-nucleus and nucleus-nucleus collisions at SPS and RHIC energies.Comment: 11 pages, 4 figures, Invited talk at V Int. Conf. on Strangeness in Quark Matter, Berkeley, CA, July 20--25, 200

    Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p+pp+p collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table

    Surgical treatment of zygomatic bone fracture using two points fixation versus three point fixation-a randomised prospective clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zygoma plays an important role in the facial contour for both cosmetic and functional reasons; therefore zygomatic bone injuries should be properly diagnosed and adequately treated. Comparison of various surgical approaches and their complications can only be done objectively using outcome measurements which in turn require protocol management and long-term follow up. The preference for open reduction and internal fixation of zygomatic fractures at three points has continued to grow in response to observations of inadequate results from two point and one point fixation techniques.</p> <p>The objectives of this study were to compare the efficacy of zygomatic bone after treatment with ORIF using 2 point fixation and ORIF using 3 point fixation and compare the outcome of two procedures.</p> <p>Methods</p> <p>100 patients were randomly divided equally into two groups. In group A, 50 patients were treated by ORIF using two point fixation by miniplates and in group B, 50 patients were treated by ORIF using three point fixation by miniplates. They were evaluated for their complications during and after surgery with their advantages and disadvantages and the difference between the two groups was observed.</p> <p>Results</p> <p>A total of 100 fractures were sustained. We found that postoperative complication like decreased malar height and vertical dystopia was more common in those patients who were treated by two point fixation than those who were treated with three point fixation.</p> <p>Conclusions</p> <p>Based on this study open reduction and internal fixation using three point fixation by miniplates is the best available method for the treatment zygomatic bone fractures.</p

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    Get PDF
    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure
    corecore