1,241 research outputs found

    Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005

    Get PDF
    The Cordilleras Huayhuash and Raura are remote glacierized ranges in the Andes Mountains of Peru. A robust assessment of modern glacier change is important for understanding how regional change affects Andean communities, and for placing paleo-glaciers in a context relative to modern glaciation and climate. Snowline altitudes (SLAs) derived from satellite imagery are used as a proxy for modern (1986–2005) local climate change in a key transition zone in the Andes. <br><br> Clear sky, dry season Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) satellite images from 1986–2005 were used to identify snowline positions, and their altitude ranges were extracted from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Based on satellite records from 31 glaciers, average snowline altitudes (SLAs), an approximation for the equilibrium line altitude (ELA), for the Cordillera Huayhuash (13 glaciers) and Cordillera Raura (18 glaciers) from 1986–2005 were 5051 m a.s.l. from 1986–2005 and 5006 m a.s.l. from 1986–2002, respectively. During the same time period, the Cordillera Huayhuash SLA experienced no significant change while the Cordillera Raura SLA rose significantly from 4947 m a.s.l. to 5044 m a.s.l

    Inter-hemispheric linkages in climate change: Paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Nino Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Controlled formation of metallic nanowires via Au nanoparticle ac trapping

    Full text link
    Applying ac voltages, we trapped gold nanoparticles between microfabricated electrodes under well-defined conditions. We demonstrate that the nanoparticles can be controllably fused together to form homogeneous gold nanowires with pre-defined diameters and conductance values. Whereas electromigration is known to form a gap when a dc voltage is applied, this ac technique achieves the opposite, thereby completing the toolkit for the fabrication of nanoscale junctions.Comment: Nanotechnology 18, 235202 (2007

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Etiology of the membrane potential of rat white fat adipocytes

    Get PDF
    The plasma membrane potential (Vm) is key to many physiological processes, however its ionic aetiology in white fat adipocytes is poorly characterised. To address this question, we have employed the perforated patch current-clamp and cell-attached patch-clamp methods in isolated primary white fat adipocytes and their cellular model: 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1±1.2mV (n=95) and -28.8±1.2mV (n=87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular [K+] to 50mM by equimolar substitution of bath Na+ did not affect Vm, whereas substitution of bath Na+ with the membrane impermeant cation N-methyl-D-glucamine+ hyperpolarized Vm by 16mV, data indicative of a non-selective cation permeability. Substitution of 133mM extracellular Cl- with gluconate, depolarised Vm to +5.5, whereas Cl- substitution with I- caused a -9mV hyperpolarization. Isoprenaline (10µM) but not insulin (100nM) significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl- with an inward slope conductance of 16±1.3pS (n=11) and a reversal potential close to the Cl- equilibrium potential: -29±1.6mV. Reduction of extracellular Cl- elevated the intracellular Ca2+ of adipocytes. In conclusion, the Vm of white fat adipocyte is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl-. Consequently, changes in serum Cl- homeostasis or the adipocyte’s permeability to this anion via drugs will affect its Vm, intracellular Ca2+ and ultimately its function and its role in metabolic control

    Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential

    Get PDF
    Recently adipose tissue has become a research topic also for the searching for an alternative stem cells source to use in cell based therapies such as tissue engineer. In fact Adipose Stem Cells (ASCs) exhibit an important differentiation potential for several cell lineages such as chondrogenic, osteogenic, myogenic, adipogenic and endothelial cells. ASCs populations isolated using standard methodologies (i.e., based on their adherence ability) are very heterogeneous but very few studies have analysed this aspect. Consequently, several questions are still pending, as for example, on what regard the existence/ or not of distinct ASCs subpopulations. The present study is originally aimed at isolating selected ASCs subpopulations, and to analyse their behaviour towards the heterogeneous population regarding the expression of stem cell markers and also regarding their osteogenic and chondrogenic differentiation potential. Human Adipose derived Stem Cells (hASCs) subpopulations were isolated using immunomagnetic beads coated with several different antibodies (CD29, CD44, CD49d, CD73, CD90, CD 105, Stro-1 and p75) and were characterized by Real Time RT-PCR in order to assess the expression of mesenchymal stem cells markers (CD44, CD73, Stro-1, CD105 and CD90) as well as known markers of the chondrogenic (Sox 9, Collagen II) and osteogenic lineage (Osteopontin, Osteocalcin). The obtained results underline the complexity of the ASCs population demonstrating that it is composed of several subpopulations, which express different levels of ASCs markers and exhibit distinctive differentiation potentials. Furthermore, the results obtained clearly evidence of the advantages of using selected populations in cell-based therapies, such as bone and cartilage regenerative medicine approaches.EU funded Marie Curie Actions Alea Jacta Est for a PhD fellowship. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Structural, Electronic, and Magnetic Properties of MnO

    Full text link
    We calculate the structural, electronic, and magnetic properties of MnO from first principles, using the full-potential linearized augmented planewave method, with both local-density and generalized-gradient approximations to exchange and correlation. We find the ground state to be of rhombohedrally distorted B1 structure with compression along the [111] direction, antiferromagnetic with type-II ordering, and insulating, consistent with experiment. We show that the distortion can be understood in terms of a Heisenberg model with distance dependent nearest-neighbor and next-nearest-neighbor couplings determined from first principles. Finally, we show that magnetic ordering can induce significant charge anisotropy, and give predictions for electric field gradients in the ground-state rhombohedrally distorted structure.Comment: Submitted to Physical Review B. Replaced: regenerated figures to resolve font problems in automatically generated pd
    corecore