We calculate the structural, electronic, and magnetic properties of MnO from
first principles, using the full-potential linearized augmented planewave
method, with both local-density and generalized-gradient approximations to
exchange and correlation. We find the ground state to be of rhombohedrally
distorted B1 structure with compression along the [111] direction,
antiferromagnetic with type-II ordering, and insulating, consistent with
experiment. We show that the distortion can be understood in terms of a
Heisenberg model with distance dependent nearest-neighbor and
next-nearest-neighbor couplings determined from first principles. Finally, we
show that magnetic ordering can induce significant charge anisotropy, and give
predictions for electric field gradients in the ground-state rhombohedrally
distorted structure.Comment: Submitted to Physical Review B. Replaced: regenerated figures to
resolve font problems in automatically generated pd