13 research outputs found

    Design and Analysis of Anomaly Detection and Mitigation Schemes for Distributed Denial of Service Attacks in Software Defined Network. An Investigation into the Security Vulnerabilities of Software Defined Network and the Design of Efficient Detection and Mitigation Techniques for DDoS Attack using Machine Learning Techniques

    Get PDF
    Software Defined Networks (SDN) has created great potential and hope to overcome the need for secure, reliable and well managed next generation networks to drive effective service delivery on the go and meet the demand for high data rate and seamless connectivity expected by users. Thus, it is a network technology that is set to enhance our day-to-day activities. As network usage and reliance on computer technology are increasing and popular, users with bad intentions exploit the inherent weakness of this technology to render targeted services unavailable to legitimate users. Among the security weaknesses of SDN is Distributed Denial of Service (DDoS) attacks. Even though DDoS attack strategy is known, the number of successful DDoS attacks launched has seen an increment at an alarming rate over the last decade. Existing detection mechanisms depend on signatures of known attacks which has not been successful in detecting unknown or different shades of DDoS attacks. Therefore, a novel detection mechanism that relies on deviation from confidence interval obtained from the normal distribution of throughput polled without attack from the server. Furthermore, sensitivity analysis to determine which of the network metrics (jitter, throughput and response time) is more sensitive to attack by introducing white Gaussian noise and evaluating the local sensitivity using feed-forward artificial neural network is evaluated. All metrics are sensitive in detecting DDoS attacks. However, jitter appears to be the most sensitive to attack. As a result, the developed framework provides an avenue to make the SDN technology more robust and secure to DDoS attacks

    Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme.

    No full text
    The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury

    MiR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer

    No full text
    MicroRNAs (miRNAs) control cell cycle progression by targeting the transcripts encoding for cyclins, CDKs and CDK inhibitors, such as p27(KIP1) (p27). p27 expression is controlled by multiple transcriptional and posttranscriptional mechanisms, including translational inhibition by miR-221/222 and posttranslational regulation by the SCF(SKP2) complex. The oncosuppressor activity of miR-340 has been recently characterized in breast, colorectal and osteosarcoma tumor cells. However, the mechanisms underlying miR-340-induced cell growth arrest have not been elucidated. Here, we describe miR-340 as a novel tumor suppressor in non-small cell lung cancer (NSCLC). Starting from the observation that the growth-inhibitory and proapoptotic effects of miR-340 correlate with the accumulation of p27 in lung adenocarcinoma and glioblastoma cells, we have analyzed the functional relationship between miR-340 and p27 expression. miR-340 targets three key negative regulators of p27. The miR-340-mediated inhibition of both Pumilio family RNA-binding proteins (PUM1 and PUM2), required for the miR-221/222 interaction with the p27 3'-UTR, antagonizes the miRNA-dependent downregulation of p27. At the same time, miR-340 induces the stabilization of p27 by targeting SKP2, the key posttranslational regulator of p27. Therefore, miR-340 controls p27 at both translational and posttranslational levels. Accordingly, the inhibition of either PUM1 or SKP2 partially recapitulates the miR-340 effect on cell proliferation and apoptosis. In addition to the effect on tumor cell proliferation, miR-340 also inhibits intercellular adhesion and motility in lung cancer cells. These changes correlate with the miR-340-mediated inhibition of previously validated (MET and ROCK1) and potentially novel (RHOA and CDH1) miR-340 target transcripts. Finally, we show that in a small cohort of NSCLC patients (n=23), representative of all four stages of lung cancer, miR-340 expression inversely correlates with clinical staging, thus suggesting that miR-340 downregulation contributes to the disease progression

    miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer

    No full text
    MicroRNAs (miRNAs) control cell cycle progression by targeting the transcripts encoding for cyclins, CDKs and CDK inhibitors, such as p27KIP1 (p27). p27 expression is controlled by multiple transcriptional and posttranscriptional mechanisms, including translational inhibition by miR-221/222 and posttranslational regulation by the SCFSKP2 complex. The oncosuppressor activity of miR-340 has been recently characterized in breast, colorectal and osteosarcoma tumor cells. However, the mechanisms underlying miR-340-induced cell growth arrest have not been elucidated. Here, we describe miR-340 as a novel tumor suppressor in non-small cell lung cancer (NSCLC). Starting from the observation that the growth-inhibitory and proapoptotic effects of miR-340 correlate with the accumulation of p27 in lung adenocarcinoma and glioblastoma cells, we have analyzed the functional relationship between miR-340 and p27 expression. miR-340 targets three key negative regulators of p27. The miR-340-mediated inhibition of both Pumilio family RNA-binding proteins (PUM1 and PUM2), required for the miR-221/222 interaction with the p27 3'-UTR, antagonizes the miRNA-dependent downregulation of p27. At the same time, miR-340 induces the stabilization of p27 by targeting SKP2, the key posttranslational regulator of p27. Therefore, miR-340 controls p27 at both translational and posttranslational levels. Accordingly, the inhibition of either PUM1 or SKP2 partially recapitulates the miR-340 effect on cell proliferation and apoptosis. In addition to the effect on tumor cell proliferation, miR-340 also inhibits intercellular adhesion and motility in lung cancer cells. These changes correlate with the miR-340-mediated inhibition of previously validated (MET and ROCK1) and potentially novel (RHOA and CDH1) miR-340 target transcripts. Finally, we show that in a small cohort of NSCLC patients (n=23), representative of all four stages of lung cancer, miR-340 expression inversely correlates with clinical staging, thus suggesting that miR-340 downregulation contributes to the disease progression

    Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons

    No full text
    Isolated congenital asplenia (ICA) is the only known human developmental defect exclusively affecting a lymphoid organ. In 2013, we showed that private deleterious mutations in the protein-coding region of RPSA, encoding ribosomal protein SA, caused ICA by haploinsufficiency with complete penetrance. We reported seven heterozygous protein-coding mutations in 8 of the 23 kindreds studied, including 6 of the 8 multiplex kindreds. We have since enrolled 33 new kindreds, 5 of which are multiplex. We describe here 11 new heterozygous ICA-causing RPSA protein-coding mutations, and the first two mutations in the 5′-UTR of this gene, which disrupt mRNA splicing. Overall, 40 of the 73 ICA patients (55%) and 23 of the 56 kindreds (41%) carry mutations located in translated or untranslated exons of RPSA. Eleven of the 43 kindreds affected by sporadic disease (26%) carry RPSA mutations, whereas 12 of the 13 multiplex kindreds (92%) carry RPSA mutations. We also report that 6 of 18 (33%) protein-coding mutations and the two (100%) 5′-UTR mutations display incomplete penetrance. Three mutations were identified in two independent kindreds, due to a hotspot or a founder effect. Finally, RPSA ICA-causing mutations were demonstrated to be de novo in 7 of the 23 probands. Mutations in RPSA exons can affect the translated or untranslated regions and can underlie ICA with complete or incomplete penetrance

    De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects

    Get PDF
    We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1(-/-)) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p. Arg184Pro, p. Met224Lys, and p. Arg227Pro) or within the homeodomain (p. Arg234Pro, and p. Arg235Gln), whereas p. Ser262Glnfs*2, and p. Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species
    corecore