

DESIGN AND ANALYSIS OF ANOMALY

DETECTION AND MITIGATION SCHEMES FOR

DISTRIBUTED DENIAL OF SERVICE ATTACKS

IN SOFTWARE DEFINED NETWORK

A.O. SANGODOYIN

Ph.D

2019

DESIGN AND ANALYSIS OF ANOMALY
DETECTION AND MITIGATION SCHEMES FOR
DISTRIBUTED DENIAL OF SERVICE ATTACKS

IN SOFTWARE DEFINED NETWORK

An Investigation into the Security Vulnerabilities of Software

Defined Network and the Design of Efficient Detection and

Mitigation Techniques for DDoS Attack using Machine Learning

Techniques

Abimbola Oladimeji SANGODOYIN

Submitted for the degree of

Doctor of Philosophy

Faculty of Engineering and Informatics

University of Bradford

2019

i

Abstract

Abimbola Oladimeji Sangodoyin

Design and Analysis of Anomaly Detection and Mitigation Schemes for

Distributed Denial of Service Attacks in Software Defined Network.

An Investigation into the Security Vulnerabilities of Software Defined Net-

work and the Design of Efficient Detection and Mitigation Techniques for

DDoS Attack using Machine Learning Techniques.

Keywords: Software Defined Network, DDoS, Network security, Attack

detection, Attack mitigation, Controller.

Software Defined Networks (SDN) has created great potential and hope to

overcome the need for secure, reliable and well managed next generation

networks to drive effective service delivery on the go and meet the demand

for high data rate and seamless connectivity expected by users. Thus, it

is a network technology that is set to enhance our day-to-day activities.

As network usage and reliance on computer technology are increasing

and popular, users with bad intentions exploit the inherent weakness of

this technology to render targeted services unavailable to legitimate users.

Among the security weaknesses of SDN is Distributed Denial of Service

(DDoS) attacks.

Even though DDoS attack strategy is known, the number of successful

DDoS attacks launched has seen an increment at an alarming rate over

the last decade. Existing detection mechanisms depend on signatures of

known attacks which has not been successful in detecting unknown or

different shades of DDoS attacks. Therefore, a novel detection mechanism

that relies on deviation from confidence interval obtained from the normal

distribution of throughput polled without attack from the server.

ii

Furthermore, sensitivity analysis to determine which of the network met-

rics (jitter, throughput and response time) is more sensitive to attack by

introducing white Gaussian noise and evaluating the local sensitivity us-

ing feed-forward artificial neural network is evaluated. All metrics are

sensitive in detecting DDoS attacks. However, jitter appears to be the

most sensitive to attack. As a result, the developed framework provides

an avenue to make the SDN technology more robust and secure to DDoS

attacks.

iii

Declaration

The candidate confirms that the work submitted is his own and that appro-

priate credit has been given where reference has been made to the work of

others.

Abimbola Sangodoyin

iv

Acknowledgements

To the El-SHADDAI, the true source of inspiration be all the glory for the

strength to conduct and carry on with this research. If I have seen further, it

is by standing on the shoulder of giants – Sir. Isaac Newton. Even though

this project is as a result of hard work and perseverance, I take no credit

for it is the cumulative effort of all (Academia, family, friends . . .) that

has led to this. Nonetheless, I will like to express my profound gratitude

to the following people: Team of Supervisors: Prof Irfan Awan who took

me on as a research student despite his many academic and professional

commitments. His calm and thorough approach to research is laudable.

I still remember his words ”Abimbola, you have to switch on your turbo

mode” when I was lagging in the experiment stage of this research. I

deeply appreciate the efforts of Prof Fun Hu and Prof Prashant Pillai for

shaping my research direction at the initial stage. Family: Words will fail

me in quantifying how amazing you guys are. From financial to moral and

emotional support, I am grateful. Prof & Mrs. AY Sangodoyin, Dr. Kulu

Ayeni, Dr. Fagbola, Bantulahi, Akule bobo, Adefare. I deeply appreciate

the support and advice of Prof Babagana Zulum before and throughout

this programme. Deborah & Grace Adekanye, thanks for your level of

understanding. You all have shown me that anything is possible once pas-

sion and determination to succeed is my watchword. Friends: RCCG

Chapel of His Glory Bradford Youth wing, Dr. Rolake Fasae, Mobayode

Akinsolu, Temitope Laniran, Helsy baby and others numerous to list here,

I appreciate you all. Colleagues: K.Maiyama, B.Modu, Aristotle,Umar,

Bashir, George thank you all for the late night gists and encouragement. It

was nice collaborating with some of you and I will continue to reach out to

you all until we leave indelible footprints in the research community. Pos-

terity: I have realised that what you are scared of is also scared of you.

v

Only time and perseverance will determine who wins the race. NEVER

GIVE UP! Above all, I am because we are – UBUNTU!!!

vi

Publications and Presentations

Books

• Sangodoyin Abimbola, Tshiamo Sigwele, Prashant Pillai, Yim Fun Hu, Irfan

Awan, and Jules Disso. ”DoS Attack Impact Assessment on Software Defined

Networks.” In International Conference on Wireless and Satellite Systems, pp.

11-22. Springer, Cham, 2017.

• Sigwele, Tshiamo, Prashant Pillai, Sangodoyin Abimbola, and Yim Fun Hu.

”Security Aware Virtual Base Station Placement in 5G Cloud Radio Access Net-

works.” In International Conference on Wireless and Satellite Systems, pp. 3-10.

Springer, Cham, 2017.

Journals

• Sangodoyin Abimbola, Mobayode Akinsolu, and Irfan Awan. ”A Deductive

Approach for the Sensitivity Analysis of Software Defined Network Parameters”

In Simulation Modelling Practice and Theory, Elsevier.

• Sangodoyin Abimbola, Bashir Mohammed,and Irfan Awan,” Data driven ma-

chine learning approach to detect DDoS attack in software defined network” in

Concurrency and Computation: Practice and Experience, Wiley 2020.(under re-

view)

Conference proceedings

• Sangodoyin Abimbola, Bashir Mohammed,Sibusiso Moyo, Irfan Awan, and

Jules Pagna Disso. ”A Framework for Distributed Denial of Service Attack De-

tection and Reactive Countermeasure in Software Defined Network.” In 2019

IEEE 7th International Conference on Future Internet of Things and Cloud (Fi-

Cloud), pp. 80-87. IEEE, 2019.

vii

• Omololu Makinde, Sangodoyin Abimbola, Bashir Mohammed,Daniel Neagu,

Umaru Adamu. ”Distributed Network Behaviour Prediction Using Machine

Learning and Agent-based Micro Simulation” In 2019 IEEE 7th International

Conference on Future Internet of Things and Cloud (FiCloud), pp. 182-188.

IEEE, 2019.

• Sangodoyin Abimbola, Babagana Modu, Irfan Awan, and Jules Pagna Disso.

”An approach to detecting distributed denial of service attacks in software de-

fined networks.” In 2018 IEEE 6th International Conference on Future Internet

of Things and Cloud (FiCloud), pp. 436-443. IEEE, 2018.

viii

Contents

Glossary xvi

1 INTRODUCTION 1

1.1 Introduction . . . 1

1.2 Aim and Objectives . . . 3

1.3 Research Questions . . . 4

1.4 Scope of the Research . . . 5

1.5 Thesis Contribution . . . 5

1.6 Organisation of the Thesis . . . 8

2 Background on SDN Architecture and Security 9

2.1 Introduction . . . 9

2.2 Roadmap to SDN . . . 9

2.3 Comparison of SDN and Traditional Networks .. 11

2.4 OpenFlow basics ... 12

2.5 SDN Architecture .. 14

2.5.1 Fundamental Characteristics of SDN ... 15

2.5.2 SDN Development Platforms ... 16

2.6 Security Issues and Vulnerabilities in SDN .. 17

2.6.1 Uncovering Security flaws using STRIDE Approach 17

2.6.2 Major Security Threats in the SDN Planes 19

2.6.3 Security Vulnerabilities in the SDN Planes 21

ix

2.6.4 Security Solutions Platform in the SDN Planes according to

ITU-T Specifications .. 22

2.6.5 Recent Studies on DDoS Attacks Detection and Mitigation 24

2.6.6 Recent Studies Using Sensitivity Analysis for DDoS Attacks

Detection .. 26

2.6.7 Overview and Classification of DDoS Attacks 27

2.6.7.1 Overview of DDoS Attacks .. 27

2.6.7.2 Classification of DDoS Attacks 27

2.7 Summary ... 29

3 Detecting DDoS attacks in Software Defined Networks 30

3.1 Introduction ... 30

3.2 DDoS Attack Detection in Traditional Network ... 31

3.3 DDoS Attack Detection in SDN .. 32

3.4 DDoS Attack Strategy ... 32

3.4.1 Vulnerability of SDN to DDoS Attack ... 33

3.5 Types of DDoS Attacks in SDN .. 35

3.5.1 ACK Flood ... 35

3.5.2 SYN Flood .. 35

3.5.3 Slowloris ... 36

3.6 Experimental Approach... 36

3.6.1 Experimental Setup .. 36

3.6.2 System Implementation .. 37

3.7 Performance Evaluation .. 39

3.8 Normality Test .. 40

3.9 Result and Discussions .. 42

3.9.1 Effect of DDoS Attack on the Server ... 42

3.9.2 Severity of DDoS Attacks on Server .. 44

3.9.3 DDoS Detection Accuracy ... 46

3.9.4 Effect of DDoS Attack on Mean Throughput using different

Window Size ... 47

3.10 Machine Learning Approach to DDoS Attack Detection in SDN............... 50

3.11 Proposed solution .. 51

x

3.11.1 System Architecture and Setup .. 51

3.11.2 Data Collection ... 51

3.11.3 Classification methodology .. 53

3.11.3.1 Logistic Regression .. 54

3.11.3.2 Linear Discriminant Analysis .. 54

3.11.3.3 K Nearest Neighbour.. 54

3.11.3.4 Naive Bayes ... 55

3.11.3.5 Classification and Regression Tree 55

3.11.3.6 Support Vector Machine ... 55

3.12 Result and Discussions .. 56

3.12.1 Evaluation metrics .. 56

3.12.2 Experimental results ... 57

3.12.2.1 Attributes correlation matrix .. 57

3.12.2.2 Prediction accuracy .. 58

3.12.2.3 Precision and Recall ... 60

3.13 Summary ... 61

4 Reconnaissance, Attack Launch and Mitigation 62

4.1 Introduction ... 62

4.2 Understanding Network Environment .. 62

4.2.1 Available Attack tools for gathering information 63

4.3 Model Formalisation ... 64

4.3.1 System Architecture ... 66

4.3.2 Experimental Approach .. 69

4.3.2.1 Hardware and Software Settings 70

4.4 Active Reconnaissance, Attack Strategy and Countermeasure 70

4.4.1 Active Reconnaissance ... 71

4.4.2 Attack Strategy ... 71

4.4.3 Countermeasure .. 73

4.5 Result and Analysis ... 74

4.5.1 Effect of DDoS Attack on System Response time 74

4.5.2 Computational Resource Consumption .. 75

4.5.3 Effect of DDoS Attack on Packet Count .. 78

xi

4.5.4 Effect of DDoS Attack on Jitter ... 79

4.5.5 Effect of DDoS Attack on Throughput... 80

4.6 Summary ... 81

5 Sensitivity Analysis of Detection Parameters 82

5.1 Introduction ... 82

5.2 Sensitivity Analysis ... 83

5.2.1 Types of Sensitivity Analysis ... 84

5.2.1.1 Local Sensitivity Analysis.. 84

5.2.1.2 Global Sensitivity Analysis .. 85

5.3 Artificial Neural Network Application to Sensitivity Analysis 85

5.3.1 Neural Network Training Algorithms ... 85

5.4 Description of Dataset ... 87

5.5 Experimental Approach... 90

5.5.1 Data Normalisation ... 91

5.5.2 Cost function value evaluation ... 92

5.5.3 AWGN and MSE .. 95

5.5.4 ANN training .. 95

5.6 Result and Discussions .. 97

5.6.1 Hypothesis test.. 99

5.7 Summary ... 101

6 Conclusions and Future Work 102

6.1 Conclusion... 102

6.2 Future Work ... 104

References 105

Appendix A Results of Local sensitivity analysis of Tp noisy, Jt noisy and Rt

noisy for 50 runs 121

Appendix B LSA code in Mfile format 125

Appendix C FaTree topology code 135

xii

List of Figures

1.1 Diffusion of innovation . . . 2

1.2 Relationship between chapters and research questions 7

2.1 Migration of network functionality to hardware ... 10

2.2 SDN technology development... 11

2.3 OpenFlow enabled SDN device [78] .. 13

2.4 SDN architecture illustrating the infrastructure, control and application

layers. [118] ... 14

2.5 CIA Triad .. 18

2.6 Classification of DDoS attacks .. 28

3.1 Rising scale of DDoS attack experienced in the last 12 years 31

3.2 DDoS Attack Strategy ... 33

3.3 DDoS attack process in SDN .. 34

3.4 progression of SYN flood attack ... 36

3.5 Network topology .. 37

3.6 Frequency distribution of Fast-Ethernet Link without ACK attack............. 41

3.7 Frequency distribution of Fast-Ethernet Link without SYN attack 41

3.8 Frequency distribution of Fast-Ethernet Link without slowloris attack 42

3.9 Effect of DDoS attack on server throughput for Fast-Ethernet 43

3.10 Effect of DDoS attack on server throughput for Ethernet 44

3.11 Severity of Attack on Fast-Ethernet Link .. 45

3.12 Severity of Attack on Ethernet Link .. 46

xiii

 LIST OF FIGURES

3.13 Modelled SDN tree architecture

3.14 Data collection and cleaning steps

3.15 Correlation matrix plot of throughput, jitter and response time . .

3.16 Algorithm prediction accuracy for k = 3, 5 and 10

3.17 Box plot comparing algorithm performance

3.18 Performance of classifier in terms of precision

3.19 Performance of classifier in terms of recall

4.1 Fat-tree network topology .

4.2 Global view of network from controller perspective

4.3 Methodology flow chart of the reconnaissance and countermeasure

4.4 Zenmap view of network topology

4.5 Nmap output with details of server open port

4.6 Average response time from server before and after attack

4.7 Controller CPU utilisation under TCP-based attack

4.8 Server CPU utilisation under TCP-based attack

4.9 Controller CPU utilisation under TCP-based attack

4.10 Server CPU utilisation under TCP-based attack

4.11 Packet count before and during DDoS attack

4.12 DDoS attack effect on Jitter . .

4.13 Effect of DDoS attack on server throughput

5.1 Sensitivity analysis of relationship between input and output response 83

5.2 Memory speed comparison of neural network algorithm 87

5.3 LSA methodology flow diagram ... 90

5.4 Variation in cost function value versus attack ... 94

5.5 AWGN distribution ... 95

5.6 A typical plot of MSE vs number of Epochs... 96

5.7 ANN training model .. 97

5.8 Sensitivity analysis of throughput (Tp), jitter (Jt) and response time(Rt) 101

. . 52

. . 53

. . 58

. . 59

. . 59

. . 60

. . 61

. . 67

. . 68

. 71

. . 72

. . 72

. . 75

. . 76

. . 76

. . 77

. . 77

. . 78

. . 79

. . 80

xiv

List of Tables

2.1 Security in Traditional network vs SDN ... 12

2.2 SDN development platforms ... 17

2.3 Microsoft STRIDE attack types and security properties [48] 18

2.4 SDN specific vs non-specific threats [77] .. 21

2.5 Security vulnerabilities in SDN according to planes................................... 21

2.6 DDoS attacks on SDN layers [33] .. 22

2.7 Security solutions according to ITU-T security recommendations [2] . 23

3.1 Simulation parameters description .. 38

3.2 Parameter used for simulating the attack traffic .. 39

3.3 Normality test for Ethernet data without attack .. 40

3.4 Detection accuracy for varying window size .. 47

3.5 Ethernet simulation table ... 48

3.6 Fast-Ethernet simulation table ... 49

4.1 Open source tools to gather information ... 64

4.2 Open source DDoS Attack tools ... 64

4.3 model parameters description.. 66

4.4 Simulation parameters descriptions .. 70

5.1 Comparison of Neural Network training algorithm 86

5.2 Descriptive statistics of actual simulation data (over 900 data samples)

for normal scenario.. 88

xv

 LIST OF TABLES

5.3 Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for TCP

attack scenario ... 88

5.4 Descriptive statistics of Tp, Rt and Jt (over 900 data samples) for UDP

attack scenario ... 88

5.5 Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for HTTP

attack scenario ... 89

5.6 Descriptive statistics of normalised Tp, Rt and Jt(over 900 data sam-

ples) for without attack scenario ... 91

5.7 Descriptive statistics of normalised Tp, Rt and Jt (over 900 data sam-

ples) for TCP attack scenario .. 92

5.8 Descriptive statistics of normalised Tp, Rt and Jt (over 900 data sam-

ples) for UDP attack scenario .. 92

5.9 Descriptive statistics of normalised Tp, Rt and Jt (over 900 data sam-

ples) for HTTP attack scenario .. 92

5.10 Descriptive Statistics of the Cost function value (over 3600 data sam-

ples) for normal, TCP, UDP and HTTP attack scenarios 94

5.11 Local sensitivity analysis for noisy Tp, normalised Rt, normalised Jt

(over 3600 data samples) for 50 statistical runs .. 98

5.12 Local sensitivity analysis for noisy Rt, normalised Jt, normalised Tp

(over 3600 data samples) for 50 statistical runs .. 98

5.13 Local sensitivity analysis for noisy Jt, normalised Rt, normalised Tp

(over 3600 data samples) for 50 statistical runs .. 99

5.14 Descriptive Statistics of the MSE Values Over 50 Statistical Runs 100

A.1 Local sensitivity analysis for Tp noisy, normalised Rt, normalised Jt

(over 3600 data samples) for 50 statistical runs .. 122

A.2 Local sensitivity analysis for Rt noisy, normalised Jt, normalised Tp

(over 3600 data samples) for 50 statistical runs .. 123

A.3 Local sensitivity analysis for Jt noisy, normalised Rt, normalised Tp

(over 3600 data samples) for 50 statistical runs .. 124

xvi

Glossary

ACK Acknowledgement

ANN Artificial Neural Network

API Application Program Interface

AWGN Additive White Gaussian Noise

CART Classification and Regression Tree

CI Confidence Interval

CIA Confidentiality Integrity and Availability

CPU Central Processing Unit

CV SS Common Vulnerability Scoring System

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial of Service

FN False Negative

FP False Positive

GSA Global Sensitivity Analysis

GSMP Global Standards Management Process

xvii

 GLOSSARY

HTTP HyperText Transfer Protocol

HULK HTTP Unbearable Load King

ICMP Internet Control Messaging Protocol

IDS Intrusion Detection System

IOS Internet Operating System

ITU − T International Telecommunications Unit

KNN K Nearest Neighbour

LDA Linear Discriminant Analysis

LOIC Low Orbit Ion Canon

LR Logistic Regression

LSA Local Sensitivity Analysis

MSE Mean Squared Error

NB Naive Bayes

ODL OpenDaylight

ONF Open Network Foundation

OS Operating System

PDF Probability Density Function

QoS Quality of Service

RFC Request For Comment

RTT Round Trip Time

SDN Software Defined Networking

SNMP Simple Network Management Protocol

xviii

 GLOSSARY

SOM Self Organising Map

SSL Secure Sockets Layer

SV M Support Vector Machine

SY N Synchronise

TCAM Ternary Content Addressable Memory

TCB Transmission Control Block

TCP Transmission Control Protocol

TLS Transport Layer Security

TP True Positive

TTL Time-To-Live

UDP User Datagram Protocol

WAN Wide Area Network

1

1
INTRODUCTION

1.1 Introduction

Computer networks have become part of our everyday lives from the government to

commercial enterprises to individuals [88]. These networks are built from a large

number of devices such as routers, switches and middleboxes with complex protocols

running on them. Operating and maintaining a computer network infrastructure for

secure and seamless connectivity is not an easy task and remains a challenging task

as advancement and demand for ubiquitous connections from end users is increasing.

The race to keep up with network administration tasks is further heightened due to the

integration of software to our daily routine and wide adoption of smart mobile devices

and lately internet-of-things. To accommodate the continually changing demand of the

network environment, network administrators are saddled with the responsibility of

configuring vendor-specific devices and setting configuration policies for effective and

reliable operation. As a result, network management and dynamic response to events

and applications are arduous and prone to error. Similarly, in the face of growing traffic

and demand for more data rates from consumers, the service providers need to keep

up with the pace through investments in bigger and faster links and edge routers, even

though revenues are growing quite slowly [32] [118].

In view of the pressing challenges network administrators and vendors are faced

with, there is a need to optimise and bring innovation to existing network design and

architecture. The innovation is expected to bear in mind cost, programmability, and

Chapter

2

 1.1 Introduction

how robust the network is, in meeting the increasing demand of users. Thus, the emer-

gence of Software Defined Network (SDN).

As a revolutionary concept, SDN has created great potential and hope to overcome

the need for flexible, secure, reliable, and well managed next generation networks [3].

SDN separates the control and data plane in networks such that switches become sim-

ple data forwarding devices and network management is controlled by logically cen-

tralised controller. This remarkable feature of SDN provides a programmable, vendor-

agnostic, cost effective and innovative network architecture.

The future of SDN lies in its acceptance and deployment. Even though technology

and its deployment take years before it can be available to end users due to standardi-

sation process and Request For Comments (RFC). However, speculations remain as to

whether the same should be expected for SDN or not. So far, the need for researchers to

run experiments for campus networks gave birth to the deployment of SDN on a small

scale which subsequently led to the proposal of new network architecture, ETHANE,

for enterprise network [88], [23]. Figure 1.1 shows the conventional development

trend of technology[111].

Figure 1.1: Diffusion of innovation

The trend of SDN might differ slightly from this conventional trend as network

equipment manufacturers and vendors are interested in the promising nature of the

SDN technology and its implementation, as seen from Google B4 deployment in WAN

data centre [68], VMware NSX virtualisation platform [132], and Linux foundation

collaborative project, OpenDaylight[109].

In spite of the programmability, flexibility, universal connectivity and centralised

3

 1.2 Aim and Objectives

control, which are critical to the success of SDN, these features are at odds with mak-

ing it more secure. The SDN platform can bring with it several security breaches which

include an increased potential for Distributed Denial-of-Service (DDoS) attacks due to

controller centralisation and flow table limitations in network devices[120]. Further-

more, the abstraction of flows and underlying hardware resources make it easier for

harvesting of intelligence which can be used effortlessly for further exploitation and

reprogramming the entire network by malicious user [78] [118].

1.2 Aim and Objectives

In today’s world, many networks are connected. Security breach spreads at an alarming

rate, sometimes spanning the globe within hours or days. Even enterprises that have

secure perimeters often find themselves with significant internal security breaches. As

a result, security-focused SDN architecture is designed to keep malicious users at bay.

Consequently, this study is aimed at:

• Effectively detecting and mitigating distributed denial of service attack in soft-

ware defined networks using statistical analysis and machine learning approach to

achieve better system performance and availability to legitimate users.

To achieve the stated aim, the following objectives are defined:

• Identification of SDN vulnerabilities and investigation of existing SDN security

solutions related to DDoS in SDN

• Design and implementation of network topology to extract real time SDN traffic

data before and after DDoS attack

• Model a statistical and machine learning techniques that are simple, less compu-

tationally intense and offers the best performance in detecting DDoS attacks

• Perform sensitivity analysis on selected network traffic attributes for attack traf-

fic classification

4

 1.3 Research Questions

1.3 Research Questions

Research Question 1 Although the deployment of SDN promises to significantly im-

prove network applicability and efficiency, the programmability aspect also makes it

more vulnerable to a number of attacks and configuration errors which may pose more

serious consequences than in traditional networks. Hence, How vulnerable is SDN to

DDoS attack?

Research Question 2 Technologies that are not developed with security and pri-

vacy in mind will eventually constitute the weakest link in a network. With high-speed

data transfer and signalling, attack on a very large scale can generate large signalling

storm that can take a network down in no time. This gives rise to Research question 2:

What is the impact of DDoS attack on SDN? knowing if DDoS attack has significant

impact on the SDN architecture create an avenue to build robust security measures to

mitigate DDoS attacks in SDN controller.

Research Question 3 Even though DDoS attack strategy is known,Why is it dif-

ficult to handle DDoS attacks? In addition, are there deployment points suitable to

mitigate DDoS attack?

Research Question 4 Several detection techniques are available in the public do-

main, yet, DDoS attack is on the increase. Hence, the need for effective detection

techniques. Which defense mechanism is lightweight and at what interval can net-

work traffic be polled? Also, given a known detection mechanism, How would they

perform if an unknown attack variant occurred?

Research Question 5 A lot of DDoS datasets exists in the research community

with several metrics utilised in detecting DDoS attack. This gives rise to the question

How sensitive are DDoS attack impact metrics in detecting and mitigating attacks

in SDN. Having only the sensitive metrics may reduce complex computation time and

demand for high-performance computing hardware in detecting and mitigating attacks.

Security should be considered when the architecture is designed, not an after-

thought or a patch. Hence, the need to build robust security solutions around SDN

architecture to combat shades of attack.

5

 1.4 Scope of the Research

1.4 Scope of the Research

This research focuses on the use of machine learning techniques and statistical anal-

ysis to effectively detect DDoS attacks in SDN. It investigates the vulnerabilities of

the SDN network using Kali Linux, and DDoS flooding attacks launched on the net-

work using open source Low Orbit Ion Canon (LOIC) attack tool. Custom network

topologies were modelled using Mininet and all simulations performed in an isolated

network using Oracle virtual box and Linux operating system (Ubuntu).

Real SDN traffic datasets for DDoS flooding and attack free network traffic were

extracted and cleaned using KNIME as discussed in Chapter 3 and Chapter 4.

It is worth noting that all DDoS flooding attacks launched were orchestrated from

internal network. Hence, DDoS attacks launched through external networks are not

covered and are outside the scope of this work.

1.5 Thesis Contribution

This thesis centres on effectively detecting and mitigating distributed denial of service

attacks in software defined networks. The core contributions of the research encompass

five areas:

• 1. Analysis of the impact of DDoS flooding attack in SDN

Despite the concerted efforts by researchers for detecting and mitigating the

menace of DDoS attacks, it is continuously growing in volume and severity.

SDN as a revolutionary concept alters existing network architecture and decou-

ples data plane from control plane for interoperability and network programma-

bility. Hence, the need to analyse the impact of DDoS attacks on the new archi-

tecture. Using throughput and jitter as impact metrics, this study reveals that for

an SDN network, a DDoS attack on the infrastructure plane will highly degrade

network performance.

• 2. A lightweight approach to detect DDoS attacks using statistical analysis

Various DDoS detection mechanisms rely on pattern recognition to identify at-

tacks. Understanding network characteristics such as protocols, CPU utilisation,

6

 1.5 Thesis Contribution

delay, throughput, packet header, and packet size will help in determining the

type of detection mechanism to be deployed. Hence, most techniques rely on

data collection, filtering, and processing for anomaly detection using statistics

and machine learning techniques [10]. In this research, a statistical approach

to detect DDoS flooding attacks in SDN is presented. It offers unique comple-

mentary advantages compared to existing methods by employing a lightweight

approach to detect DDoS flooding attacks. Our detection mechanism relies on

deviation from the confidence interval obtained from the normal distribution of

throughput polled without attack from the server. Similarly, data collected effec-

tively with less overhead from victim server using ‘iperf’ i.e. heavy communi-

cation between controller and switches is reduced.

• 3. Vulnerability assessment of SDN to spoofing attack and mitigation of

DDoS attack using reactive flow rule insertion

Information gathering is an essential step needed to gain access to a network. It

involves knowing which information is useful for launching an attack and how

to extract it through reconnaissance. In this work, the feasibility of spoofing and

flooding DDoS attacks on data plane devices in SDN using Mininet emulator,

floodlight controller, and network performance testing tools is demonstrated.

Furthermore, these attacks are mitigated by pushing reactive flow through the

controller to the attacking switch port.

• 4. Implementation of machine learning algorithms for the detection of UDP,

TCP and ICMP flooding attack in SDN

Machine learning is a wide interdisciplinary area of research that involves learn-

ing patterns from datasets for the computer to perform a specific task without

explicit instructions and it has been applied in research to detect DDoS attacks.

All DDoS detection techniques leverage on identifying key features (traffic flow

metrics) relevant to identify malicious traffic from benign traffic. Our approach

is simpler and mimics network architecture obtainable in a mid-sized enterprise

network. A new dataset that contains three types of DDoS attacks namely:

UDP flood, TCP flood, and HTTP flood are simulated in a controlled environ-

ment. The TCP, UDP, and ICMP flood attacks are considered because the pro-

7

 1.5 Thesis Contribution

tocols represent a large portion of web application traffic usage and characteris-

tics. Also, six different machine learning algorithm is applied to the generated

datasets for the detection of UDP, TCP, and HTTP flooding attacks.

• 5. Sensitivity analysis of DDoS attack detection metrics using Artificial Neu-

ral Network

Sensitivity analysis offers an efficient approach to assess the extent to which

output is affected by changes in input variables. One of the key advantages of

sensitivity analysis is that it identifies critical variables that may be given less

consideration when designing a robust detection model. This research is a novel

attempt to identify network parameters that are more sensitive in detecting DDoS

attacks in SDN by implementing local sensitivity analysis using artificial neural

networks to identify key network metrics that mainly influence the prediction of

whether an SDN is under attack or secure.

Figure 1.2 outlines the relationship between the thesis contribution, research questions

answered and how it has been addressed in the thesis chapters. The research outcome

has led to a number of publications listed under publications and presentation section.

Figure 1.2: Relationship between chapters and research questions

8

 1.6 Organisation of the Thesis

1.6 Organisation of the Thesis

This thesis is divided into six chapters. The first chapter introduces the concept of SDN

and highlights the aim and objectives of the research together with research questions

and scope of the research. The remainder of this thesis is organised as follows:

• Chapter2 reviews the roadmap to SDN and the internal architecture of SDN.

This chapter also examines the security threats and vulnerabilities in the archi-

tecture. Also, the research trend in SDN security and analysis coupled with

available security solutions platform in the SDN planes according to ITU-T spec-

ifications is presented.

• Chapter3 presents an overview of DDoS attack. Available DDOS detection

mechanism in both SDN and the traditional network is explored. Simulation

scenarios are setup with DDoS flooding attack launched against TCP and UDP

server. Statistical and Machine learning approach to detect DDoS attacks were

looked at. Some of the algorithms that were considered include Support Vector

Machine, Classification and Regression Trees and Linear Discriminant Analysis.

• Chapter4 presents an information gathering session to explore vulnerabilities

in SDN using Nmap scanner. The results obtained are used to spoof source IP

address to launch DDoS attacks on the server. The attack launched is mitigated

by pushing reactive flow to the attacking switch port via the controller.

• Chapter5 presents the sensitivity analysis of DDoS attack impact metrics con-

sidered in the previous chapter. This chapter examines which of the impact met-

rics(Jitter, throughput and response time) is more sensitive to DDoS attacks.

Feed forward Artificial Neural Network (ANN) is used to generate input data

and local sensitivity analysis is performed on the normalised data

• Chapter6 This chapter presents the conclusion of the thesis and recommends a

future research direction.

9

2
Background on SDN Architecture and

Security

2.1 Introduction

This chapter, which is made up of two major sections, describes the SDN architecture

and SDN security. Firstly, a brief history of SDN followed by a general overview of

SDN architecture and comparison of security between traditional network and SDN is

presented. The security issues and vulnerabilities of SDN are then examined. One of

the security issues SDN is prone to is Distributed Denial of Service attacks. This led

to Overview of DDoS attacks and classification.

2.2 Roadmap to SDN

Networking devices have been successfully developed and deployed over the past few

years [54]. This has led to migration functionality grown into hardware as shown in

Figure. 2.1. Each device is designed to be autonomous to the greatest extent possible

due to relatively small fixed networks and shared domain. Hence, the introduction of

intelligence resident in every device and the birth of vendor-agnostic devices [54].

However, the traditional network architecture is at a point where its ability to adapt to

changing user demands, like those enabled by virtualisation technologies has become

a hindrance [123]

Chapter

10

 2.2 Roadmap to SDN

Figure 2.1: Migration of network functionality to hardware

[54]

While SDN is seen as an evolving networking paradigm, it is worth noting that the

concept of programmable networks that matures into SDN has been around for many

years [102]. Precursors to SDN began with Open Signalling (OpenSig) with the in-

tent of making internet and many mobile networks more programmable [21]. This

further progressed to General Switch Management Protocol (GSMP) by using a con-

troller to perform resource allocation on a multicast connection [40]. Similarly, active

networking [129] [137] proposed the concept of programmable network infrastruc-

ture to support customised services. However, this idea received little attention due to

security and performance concerns [92].

Another concept of decoupling control and management functions is raised in the

4D project [55] [20]. The authors proposed clean slate design for separation between

routing decision logic and governing protocols between network devices. In line with

this approach, a management protocol responsible for the modification of network de-

vices is proposed by NETCONF [46]. The proposed management protocol is saddled

with the responsibility of overcoming the security limitations of SNMP.

SANE [24] and ETHANE [23] defined a new network architecture for an enter-

prise network. The research work laid the foundation for SDN. Consequently, ForCES

[41] and OpenFlow [88] standardise information exchange between SDN planes. Im-

plementation of globally deployed software defined WAN has also been witnessed in

the datacentre network [68]. Figure 2.2 shows the timeline of SDN technology matu-

rity. With the formation of a consortium called Open Networking Foundation (ONF)

11

 2.3 Comparison of SDN and Traditional Networks

Figure 2.2: SDN technology development

to promote networking through SDN and the standardisation of OpenFlow protocol

and related technologies, acceptance and implementation of SDN technology is not far

from reach.

2.3 Comparison of SDN and Traditional Networks

The traditional approach to networking involves assigning a complete computing unit

to a single task. This approach is effective and works fine in a small scale network.

However, as networks grow in size, they become much more complex to manage and

maintain. On the other hand, SDN seems to address some of the limitations inherent

in the traditional network. Table 2.1 [18] presents a comparison between traditional

network and SDN in handling security issues.

12

 2.4 OpenFlow basics

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•

• • •

• • •

Table 2.1: Security in Traditional network vs SDN

Security Challenges Traditional approach SDN based approach Benefits of SDN

Perimeter security

New security threat

perimeter defined

through physical

objects

Each device statically

configured

Each device operates

autonomously

security signature is

identified

perimeter defined

through application

layer

Different policies can

be applied to external

and internal traffic

single configuration is

possible for all security

devices in each domain

End-to-end network

visibility is derived

from centralised con-

troller

Policy is decoupled

from physical perimeter

Policies applied based

on application-layer at-

tributes

Security complexity

does not increase to

changes in logical

perimeter

Operations staff can

react to threats from

controller

User is located with

available tools within

the system

- Significant reduction

in network devices re-

quired for security pro-

cessing, thereby reduc-

ing capital expenditure

user is denied network

access

Fine-grained counter- -

measure policy in real-

time

malicious user moves - -

to another vulnerable

port to launch an attack

High Scalability Requires proportional

increase in hardware to

meet user demands

virtualised process re-

duce hardware demand

Improves resource al-

location and utilisation

Proactive patch man-

agement

Difficult to achieve in

a consistent manner due

to the availability of fi-

nite resources in em-

bedded device

Centralised patch

management to re-

spond rapidly to new

threats

Simpler to introduce

enhanced features

2.4 OpenFlow basics

Most switches and routers available in the market are vendor specifics, running their

own IOS and do not typically provide an open software platform. This creates the need

to virtualise their hardware or software next to nothing. This closed source IOS does

not give room for researchers to experiment with new ideas and network vendors are

understandably nervous about disclosing their extensive and fragile distributed proto-

cols and algorithms [88]. The reason for this is not far-fetched; it simply lowers the

barrier for new competitors.

13

 2.4 OpenFlow basics

The OpenFlow started as an academic experiment and rapidly gained significance

which subsequently led to the consortium of industry giants to form Open Networking

Foundation (ONF) [104].

OpenFlow brings to the fore the concept known as Application Programming In-

terface (API) which allows direct access to manipulation of the forwarding plane of

network devices such as routers and switches, both physical and virtual [3].

An OpenFlow switch typically consists of a flow table as shown in Figure. 2.3,

which performs packet lookup and forwarding. Each table in an open flow switch

holds a set of entries that consist of the following:

• Header fields or match fields, with information found in packet header, ingress

port, and metadata used to match incoming packets.

• Counters, used to collect statistics of particular flow, such as number of received

packets, number of bytes, and duration of the flow.

• A set of instructions to be applied after a match rule that dictates how to handle

matching packets [29].

Figure 2.3: OpenFlow enabled SDN device [78]

Inside an OpenFlow device, there is a set of algorithm that defines what goes where

when a packet arrives based on the matching flow rule. A flow rule is a combination

of different matching rule. If there is no default matching rule, then, the packet will be

discarded. The priority of rules follow the natural sequence number of the table and

the row order. It is worthy of note that the throughput of commercial OpenFlow switch

is relatively low (500-1000 flow-mod per second) which is a limiting factor [15].

14

 2.5 SDN Architecture

Figure 2.4: SDN architecture illustrating the infrastructure, control and application

layers. [118]

2.5 SDN Architecture

SDN architecture encompasses the complete network platform. It is a modular ap-

proach that defines chain of command and interoperability within the network [118].

Unlike traditional network, the intelligence of data plane devices is removed to a logi-

cally centralised control system [54]. Figure 2.4 presents the SDN architecture show-

ing the data/infrastructure, control and application layer.

In Figure 2.4, there are two main elements: the controllers and the forwarding

devices. A forwarding device is a hardware or software element specialised in packet

forwarding and based on a pipeline of flow tables where each entry of a flow table

has: a matching rule, action to be executed on matching packets and counters that keep

statistics of matching packets [78]. The controller serves as the brain of the network

and it deals with the management of network state. Below is a description of various

layers [118]:

Infrastructure layer: This layer is also known as data plane. It consists of simple

15

 2.5 SDN Architecture

forwarding elements without embedded control or software to make autonomous de-

cisions. It is accessible through the southbound interface and allows packet switching

and forwarding.

Control layer: This layer consists of SDN controllers providing a consolidated

control functionalities through Application Programming Interfaces (APIs). The cru-

cial value of the controller is to provide abstractions, essential services, and common

APIs to developers. Three communication interfaces allow the controller to interact:

northbound, southbound and the east/westbound interfaces.

• Southbound Interfaces: Southbound interface allows the controller and forward-

ing elements to interact in the infrastructure layer, thus being the crucial instru-

ment for clearly separating the control and data plane functionality.

• Northbound Interfaces: This interface is the connecting bridge between the ap-

plication layer and control layer. It enables the programmability of the con-

trollers by exposing the data models and other functionalities within the con-

trollers for use by applications at the application layer. The northbound interface

is mostly a software ecosystem, hence, a common northbound interface is still

an open issue.

• East/Westbound Interfaces: This interface is a special communication interface

provisioned for distributed controllers to synchronise state for high availability.

Its function includes import/export data between controllers and monitoring/no-

tification capabilities to check if a controller is up or notify a takeover on a set

of forwarding elements.

Application Layer: The application layer consists of end-user business applica-

tions and network services. Example of application that runs here is network virtuali-

sation. Network policy is also defined here.

2.5.1 Fundamental Characteristics of SDN

SDN is characterised by five fundamental traits namely: plane separation, network au-

tomation and virtualisation, centralised control, openness and simplified device [29].

16

 2.5 SDN Architecture

• plane separation: with the data plane separated from the control plane, a level of

packet forwarding intelligence has been added to the controller. Consequently,

this led to a reduction in long convergence time for changes made in SDN net-

work.

• network virtualisation: Network virtualisation creates an avenue for multiple

virtual networks to run over a shared infrastructure [47]. Each virtual network

created can have simpler topology than the underlying hardware. With virtuali-

sation, it is easier to spin up multiple virtual devices more portable, scalable and

cost-effective mid-sized and small scale office network.

• centralised control: Since the control plane resides in the controller, the con-

troller sees and know where each host connects to the network and the type of

topology that connects the network. Centralisation allows network engineers

to implement unique, flexible forwarding policies and monitoring/management

protocols only limited by the ability of software running on it.

• openness: Openness in SDN means that the four compass point of Northbound,

Southbound, Eastbound and Westbound interfaces should remain standard and

not proprietary. This would make communication simple, robust and perhaps

most important, extensible. In addition, openness in the SDN controller helps

network providers and customers add value to the platform with their innovation.

• simplified device: with the separation of data from the control plane, thousands

of lines of complicated control plane software to enable autonomous behaviour

has been removed. Hence, fast decisions based on forwarding instructions from

the controller can be executed by data plane devices with less memory require-

ment.

2.5.2 SDN Development Platforms

With simulators, network administrators are better equipped to analyse the complexity

of their network. There are many platforms that can be used to simulate or emulate

SDN projects. Table 2.2 shows the list of SDN development platforms available today

[5]

17

 2.6 Security Issues and Vulnerabilities in SDN

Table 2.2: SDN development platforms

Platform Mininet Estinet NS-3 Trema

Last version 2.2.1 9.0 3.26 0.10.1

Vendor Stanford University, ON. Lab Estinet technologies Inc. NS-3 project NEC Corporation

Website www.mininet.org www.estinet.com www.nsnam.org trema.github.io/trema/

Operating System Ubuntu, Fedora Linux, Fedora GNU/Linux, Windows, Mac GNU/Debian, Ubuntu, Fedora

Emulation mode Yes Yes No Yes

Simulation mode No Yes Yes No

Free/Proprietary Free Proprietary Free Free

2.6 Security Issues and Vulnerabilities in SDN

Although SDN promises more robust security features than traditional networks, SDN

itself is not fully immune to attacks. The separation of the control plane from the

data plane expose the network to a range of new attacks if identified loopholes are not

addressed before deploying.

2.6.1 Uncovering Security flaws using STRIDE Approach

Network and computer security are built on three pillars commonly referred to as Con-

fidentiality, Integrity and Availability. Figure 2.5 presents a simple but widely appli-

cable CIA triad with their mitigation techniques. A data is said to be confidential if it

can only be assessed by those authorised to use it and no one else. Integrity comes in

when the information remains the same or identical to its state when the last authorised

user assessed it. Data is available when it is accessible only to authorised users in a

convenient format within a reasonable time.

Three key parameters that often come up in computer security issues are: 1. Vul-

nerability 2. Threat and 3. Countermeasures.

The state where a system is susceptible to attack is the vulnerability state, while

threat is a potential violation of system security. Countermeasures are the techniques

employed for protecting the system.

In SDN, there are two main properties which can serve as attractive honeypots for

malicious users and headache for the less prepared enterprise. First, the ability to con-

trol networks by means of software. Second, the centralisation of network intelligence

in the controller. A malicious user with access to the controller can modify/control the

entire network. Common attack types present in today’s network can be summarised

http://www.mininet.org/
http://www.estinet.com/
http://www.nsnam.org/

18

 2.6 Security Issues and Vulnerabilities in SDN

Figure 2.5: CIA Triad

under STRIDE approach as shown in Table 2.3. The STRIDE approach seems to give

a broad view of available attack types [44]. However, grey hat hackers keep evolving

and attack types keep increasing by the day.

Table 2.3: Microsoft STRIDE attack types and security properties [48]

Attack type Security property

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privileges Authorisation

• Spoofing: In this approach, the application or a malicious user masquerades with

the purpose of concealing their identity and impersonate to gain unauthorised

access to a network.

• Tampering: Tampering refers to the intentional modification of data so as to

compromise the integrity of data sent or received.

19

 2.6 Security Issues and Vulnerabilities in SDN

• Repudiation: Repudiation attack happens when a system does not track and log

users’ actions properly, thus permitting malicious manipulation of new actions.

• Information disclosure: This is often targeted at breaching the confidentiality

reposed by end users’ on enterprise.

• Denial of service: Denial-of-service (DoS) attack can be very serious in an en-

terprise network because it prevents intended users from accessing temporarily

or indefinitely resources they would normally expect to have.

• Elevation of privileges: The main aim of a malicious attacker is to have access

to privilege information or access contents reserved for higher privileged users.

Although attacks have different level of severity, it is a worthy practice to have appro-

priate security measures in place.

2.6.2 Major Security Threats in the SDN Planes

According to [77] seven threat vectors were identified and three are more specific to

SDN namely:

• Threat vector 1 – forged or fake traffic flows: this traffic can be used to attack

switches and controllers. This threat can overwhelm the switch and controller

flow tables and inject latency into the network. Possible solution: the use of

Intrusion Detection System (IDS) with support for run-time root-cause analysis

could help identify abnormal flows in the network.

• Threat vector 2 – attacks on vulnerabilities in switches: A susceptible switch

may drop, slow down or redirect packets to overload neighbouring switches or

controllers. Possible solution: deploying autonomic trust management solutions

for network devices operating system.

• Threat vector 3 – attacks on control plane communications: this attack explores

vulnerabilities in the protocol such as TLS/SSL that comprises the controller-

device link. Possible Solution: securing communication with threshold cryptog-

raphy across controller replicas.

20

 2.6 Security Issues and Vulnerabilities in SDN

• Threat vector 4 – attacks on vulnerabilities in controllers: the controller is the

honeypot of the network. This attack is specific to SDN and is probably the

most severe threat the network can experience. The use of common IDS may

not be enough to mitigate this problem. Possible solutions: securing all sensitive

elements such as crypto keys and secrets in the controller. Another solution is

employing a diversity of controllers, programming languages and protocols used

in communications.

• Threat vector 5 – Lack of mechanisms to ensure trust between the controller

and management applications: the techniques used to certify network devices

are different from those used for applications. Multi-vendor applications and

controllers lack the ability to establish trusted relationships. Possible solution:

a robust autonomic trust management certificate could help guarantee a trusted

application during its lifetime.

• Threat vector 6 – vulnerabilities in administrative stations: administrative sta-

tions are potential exploitable target in the current network. The impact can

be severe in SDN because it makes programming and launching of coordinated

attacks from a single location. Possible solution: employing the use of proto-

cols requiring double credential verifications e.g. requiring two different users

to access a control server.

• Threat vector 7 – lack of trusted resources for remediation: good understanding

of the cause of network failure and secure recovery mode will help prevent future

network downtime. Possible solution: good logging and tracing mechanisms in

the data and control plane will help address this problem.

The identified threats provide an avenue for adequate understanding and good risk

analysis which will make SDN more secure and dependable than the current network.

Threat vectors 3, 4 and 5 are specific to SDN as shown in Table 2.4. These vectors

arise as a result of the separation of control plane and data plane and the introduction

of controller.

21

 2.6 Security Issues and Vulnerabilities in SDN

Table 2.4: SDN specific vs non-specific threats [77]

Threats Specific to SDN? Consequences in SDN

Vector 1 No Open door for DDoS attacks

Vector 2 No Potential attack inflation

Vector 3 Yes Exploiting logically centralised controllers

Vector 4 Yes Network compromise

Vector 5 Yes Easy development and deployment of malicious ap-
 plications on controllers

Vector 6 No Potential attack inflation

Vector 7 No Negative impact on fast recovery and fault diagnosis.

2.6.3 Security Vulnerabilities in the SDN Planes

A number of security vulnerabilities have been identified both in OpenFlow protocol

and SDN architecture [12]. Most of the vulnerabilities are due to the powerful author-

ity granted to SDN and third-party applications. Table 2.5 shows the attack types SDN

planes are prone to with respect to the severity of attacks. It can be seen from Table 2.5

and 2.6 that DDoS attack poses a high risk to the continuous operation of SDN con-

troller when under attack. At present, there is no standardised universal classification

or methodology for vulnerability analysis. Although the use of Common Vulnerability

Scoring System (CVSS) has been reported in [146].

Table 2.5: Security vulnerabilities in SDN according to planes

SDN Plane Attack types Level of Severity Possible Countermeasures

Information leakage Low Use of strong encryption

Application abuse Medium Update security patches regularly

Application
API abuse

 Low Use of strong encryption

Communication hijacking Low Use of strong encryption

Masquerading Low Use of strong encryption

DDoS attack High Islanding, Rate limiting,Packet dropping techniques

Control
Network manipulation High Having distributed controllers with different vendors

DDoS Attack High Islanding, Rate limiting,Packet dropping techniques

DDoS attack High Islanding, Rate limiting, Packet dropping techniques

Infrastructure
Compromised network Medium Use of strong encryption

Compromised system low Change vendor default password

Communication hijacking Medium Use of strong encryption

22

 2.6 Security Issues and Vulnerabilities in SDN

Table 2.6: DDoS attacks on SDN layers [33]

Plane Possible attacks

Data Plane TCAM exhaustion, switch DDoS, ICMP flood, TCP flood, TCP-SYN flood

Control plane Resource depletion, OpenFlow bandwidth exhaustion, amplification attacks

Application plane Exhausting northbound API, application layer DDoS (HTTP flooding, slowloris)

2.6.4 Security Solutions Platform in the SDN Planes according to

ITU-T Specifications

According to ITU, a secure network should be protected against malicious attack and

should have appropriate response time, reliability and high availability [65]. ITU-T

recommendation identifies eight of such sets that protects against all major security

threats. The identified security dimensions are: access control, authentication, non-

repudiation, data confidentiality, communication security, data integrity, availability

and privacy. The security dimensions provide an end-to-end solution when applied

to the security layers. Table 2.7 presents SDN solutions according to security dimen-

sions recommended by ITU-T. The remark reflects the current state of stable solutions

available both in research and practice.

23

 2.6 Security Issues and Vulnerabilities in SDN

Table 2.7: Security solutions according to ITU-T security recommendations [2]

 Security prop-

erty

Solution name Mechanism used Remark

S
Authentication FortNox [108]

FSL [61]

Role-based authentication and

authorization

Controls authentication policies

(admission control)

Open Challenge

T

Data Integrity OFHIP [95]

Others [72]

Isolation [57]

IPSec encapsulated security pay-

load (ESP)

VeriFlow, FortNOX , ensure in-

tegrity through flow rule legiti-

macy

Traffic isolation-based integrity

Identity management

systems are lacking

R

Non-

Repudiation

Others [145]

OFHIP [95]

VAVE [141]

Uses permanent user identities

(LISP)

Uses HIP for permanent identi-

ties

Source address validation of in-

coming packets

Open Challenge

I

Data Confi-

dentiality

OF-RHM [67]

FortNOX [108]

IBC [119]

Random host mutation

Data confidentiality through

flow rules-legitimacy

Identity-based cryptography

No specific security

systems or applications

D

Availability DISCO [107]

McNettle [133]

MAESTRO [99]

Others

Distribute SDN control plane

Extended processing capabilities

Parallelism in multi-core proces-

sors

Control-data plane functionality

trade-off and optimal controller

placement strategies

Less research efforts

to increase availability

through higher security.

App. plane and data

plane availability is still

a challenge

E

Access

trol

Con- PermOF [136] Impose access control on OF

apps

Enables security architectures

for ACL

Access control policy enforce-

ment framework

Enables dynamic access control

policies

Access control also

needed for application

plane and multiple

controllers

 FRESCO [121]

FSL [61]

Resonance [97]

 Privacy OF-RHM [119] OpenFlow random host muta-

tion

Systematic user privacy

enforcement mecha-

nisms are lacking

 Isolation [57]

ident++ [96]

Traffic-isolation-based privacy

User-selected security proce-

dures

 Communication

Security

TLS [36] Ensure controller-switch com-

munication security

Complex Configura-

tions

24

 2.6 Security Issues and Vulnerabilities in SDN

2.6.5 Recent Studies on DDoS Attacks Detection and Mitigation

DDoS attacks are catastrophic and can be a major security issue for overall network

availability. Different approaches to secure network from DDoS have been proposed [91].

Handling DDoS attack includes two steps: detection and mitigation. The defence and

mitigation can operate in a centralised or distributed mode depending on the deploy-

ment of its modules. Approaches to detection and mitigation may be based on statis-

tical analysis, policy based (predefined rules), machine learning and data mining or a

hybrid of the approach.

A large number of DDoS detection and mitigation methods have been documented

and categorised in [34], [10], [42]. In [93], the authors proposed an entropy based

approach to detect DDoS attack. A threshold is set and if entropy is lower than the

threshold and it persists for five consecutive windows, presence of attack is signified.

This solution is effective for identifying volumetric traffic but not so appropriate in

detecting slow rate DDoS attack. Another entropy based detection scheme is pre-

sented in [135]. This method extends a counter copy of flow entry in OpenFlow table,

propose a low calculation overload and a level of intelligence at the OpenFlow edge

switch. In [71], a joint entropy that relies on a statistical model used to detect and mit-

igate DDoS attack in SDN environment is presented. This method combines nominal,

preparatory and active mitigation stage to detect and stop DDoS attack. A profile is

generated in an attack-free period which is used in comparison with attack period to

detect traffic anomalies and if detected, the controller determines suspicious pair and

informs the switch to drop attack packets. This method gives high success rate in de-

termining known and unknown attacks, however, the simulation is performed using a

single topology and the latency introduced as a result of the multistage approach is not

quantified.

A statistical approach to detecting DDoS attack in SDN is also presented in [117].

This approach utilises deviation from confidence interval to signify the presence of

attack using throughput as impact metric. Similarly, analyses of average number of

connection per user is presented in [31]. The associated traffic values per user are used

to classify regular and attack traffic. If the statistics counter of IP address is less than

the minimum number of packets per connection, the traffic is said to be malicious and

the controller sends a drop rule for the IP address to the switch.

25

 2.6 Security Issues and Vulnerabilities in SDN

In [122], a policy based framework to improve security against DDoS attack is

implemented by adding two new modules: connection migration (CM) and actuating

triggers by extension to the OpenFlow data plane. The connection migration module

adds intelligence to the data plane to monitor sources that will complete the TCP con-

nection or not. The CM module only authorises useful TCP sessions to be established

while the actuating trigger is used to activate flow rule under predefined conditions to

manage network flows without delays. This method is good in addressing TCP SYN

Flood attack but no other forms of DDoS attack. The intelligence at the data plane also

introduces a level of delay which is a function of performance trade-off.

Another policy based scheme is proposed in [134]. The scheme incorporates three

layered architecture to detect and mitigate attack using two modules: DaMask–D mod-

ule and DaMask–M module. DaMask-D is an anomaly based attack detection system

that can be trained in offline and online mode. If an attack is detected, alert is issued

alongside packet information and forwarded to the DaMask-M module. The DaMask-

M module match received alert to pre-existing policies of drop, forward or modify

countermeasure and log result in a database. This policy based scheme introduces

more communication overhead and increased latency in the network.

In [74], machine learning approach to detect DDoS attack in early stage is high-

lighted. Several techniques were suggested for classification of normal traffic from ma-

licious traffic. These techniques have self-learning ability to adapt to network changes

and Support Vector Machine (SVM) provides higher accuracy in classification than

others. In addition, the work in [16] presents the use of Self Organising Map (SOM)

with 6 tuples of attributes to detect DDoS attack. The proposed lightweight method

considers median values in training the SOM and shows high rate of true positives and

low rate of false alarm. The drawback of this method is that false negatives will be

reported when the attack parameter is set to a low value.

Hybrid approach has also been used in the detection and mitigation of DDoS.

In [35], SPHINX is used to detect known and potential attacks on SDN network topol-

ogy. This model monitors and judges the legitimacy of the infrastructure plane devices

and ensures only legitimate messages are executed. However, SPHINX introduces

minimal overheads in the mitigating DDoS attack.

26

 2.6 Security Issues and Vulnerabilities in SDN

2.6.6 Recent Studies Using Sensitivity Analysis for DDoS Attacks

Detection

Application of sensitivity analysis to computer networks has become a popular re-

search topic in recent years, especially in relation to security [25][4]. In [63], the au-

thors examined using small sample computer models to make decisions and judgement

in the face of uncertainty for models associated with risk assessment of disposal of ra-

dioactive waste. The work was further extended in [64] to determine the applicability

of three widely used techniques to computer models having large uncertainties and

varying degrees of complexity. Sensitivity analysis has also been applied to address

computer networks availability in [70]. The authors implement parametric sensitivity

analysis to compute the effect of changes in the rate of constants of a Markov model on

system dependability. Authors in [60] present a method for computing network output

sensitivity with respect to variations in the inputs for multilayer feed-forward artificial

neural network with different activation functions.

In terms of security, the authors in [100] performed a sensitivity analysis on DARPA

intrusion detection datasets and reported that 33 out of 41 features of the network traffic

characteristics can be removed without causing great harm to the classification accu-

racy of DDoS attacks and normal network traffic. Similarly, sensitivity analysis has

been applied to attack pattern discovery in trusted routing scheme [69]. Using packet

delivery ratio, normalised routing overhead, distrust threshold and trust update inter-

val as performance metrics in different network conditions, the work carried out in

[69] revealed that distrust threshold is more sensitive as compared to other metrics in

optimising the detection rate of schemes employed. The authors in [4] explored the de-

tection of bots in a compromised machine using dendritic cell algorithm (DCA). Their

proposed algorithm and sensitivity analysis showed that incorporation of MAC value

has a significant effect on the detection of bot using DCA algorithm.

All the works mentioned above highlights the application of sensitivity analysis

in identifying input parameters that significantly affect system response in designing

attack detection algorithms. However, our approach differs from the ones mentioned in

the following aspects. Firstly, the features of interest are extracted from emulated SDN

environment with normal and DDoS attack traffic. Secondly, the implementation of

local sensitivity analysis using artificial neural network to identify key network metrics

27

 2.6 Security Issues and Vulnerabilities in SDN

that mainly influence the prediction of whether an SDN is under attack or secure. Full

details of this approach can be found in Chapter 5.

2.6.7 Overview and Classification of DDoS Attacks

Availability requires computer systems to function normally without loss of resources

to valid users at any point in time. DDoS attacks remain one of the most challenging

issues to availability and constitute a major threat to security problems in today’s in-

ternet.DDoS attacks can be classified under the availability section of the CIA Triad

presented in section 2.6.1. This form of attack has been a menace in the network se-

curity world and the end is still far from sight as it poses high severity risk to the SDN

planes. A brief overview and taxonomy is presented in the subsection below.

2.6.7.1 Overview of DDoS Attacks

The objective of a DDoS attack is to bring down the services of a target using dis-

tributed multiple sources with or without their consent. It’s history dates back to over

three decades ago. However, the large scale DDoS attack occurred in the nineties

when a malicious user used Trinoo to disable University’s computer network for more

than two days [37]. Since the Trinoo attack, the motivation and growing prevalence

of DDoS attacks show that legacy defence mechanisms are only partially effective. In

DDoS attack, malicious users focus on tearing down network infrastructure rather than

gaining access to the end users, this makes it difficult for intrusion detection mech-

anism in traditional defence mechanism inefficient [43] [14]. DDoS attacks are

inevitable due to inherent weakness in internet architecture to keep the intermediate

network as simple as possible to optimise packet forwarding [56]. In addition, suscep-

tibility to DDoS attack is dependent on the position of security in the rest of the global

internet [91].

2.6.7.2 Classification of DDoS Attacks

A comprehensive taxonomy of DDoS attack based on the degree of automation, ex-

ploited weaknesses, source address validity and attack rate dynamics has been pre-

sented in [91]. The distributed nature of a DDoS attack makes it significantly more

28

 2.6 Security Issues and Vulnerabilities in SDN

powerful, harder to identify and block its source. DDoS attacks can be divided into

five categories based on attacked protocol level as shown in figure 2.6[43].

Figure 2.6: Classification of DDoS attacks

Network device/host level attack: Attack at this level explore bugs or weaknesses

in device software or by exhausting the hardware resources. This attack renders the

target machine unavailable or disables the communication mechanism making the host

crash, freeze or reboot. This form of attack can be detected due to high volume traffic

but its mitigation cannot be done at the host level alone. It requires help from an

intermediate device such as a firewall. Example of this is TCP SYN attack which

exploits the weakness of the three-way handshake in the TCP connection set-up. A

server receives an initial SYN request from a client, responds with a SYN/ACK packets

and waits for the final ACK of the client. A large number of SYN packets are sent

without acknowledgement while the server is waiting for non-existent ACKs. This

process results in a server with a full buffer queue that is unable to process legitimate

connections.

Operating System level attack: operating system DDoS attacks take advantage of

the ways protocols are implemented. Example of this is the ping-of-death attack caused

by malicious user deliberately sending echo requests greater than Internet Protocol (IP)

standard size. This attack can cause the victim’s machine to crash.

Application level attack: this attack targets a given application on victim host, thus

restricting legitimate clients use of that application and possibly tying up resources of

host machine. Other applications can still be accessed by clients if the host resource is

not completely consumed. For example, a signature attack on an authentication server

ties up signature verification authentication, but the affected server will still respond

to ICMP ECHO and other applications that are independent of authentication services.

Detection of this form of attack is challenging because other applications on the vic-

29

 2.7 Summary

tim’s host will still operate undisturbed. The attack volume is usually small enough

to appear abnormal and transmitted malicious packets are virtually indistinguishable

from legitimate packets. A robust defence system would have to be modelled and

monitored for each application to account for possible detection against small volume

attacks.

Protocol feature attack: attack at this level takes advantage of certain standard

protocol features. For example, attack launched on domain name system cache on

name servers.

Data flood: this attack aims for the victim’s bandwidth. It usually thrives by send-

ing voluminous traffic to process. Example of this is a UDP flood attack and ICMP

flood attack. This attack can be detected statistically and can be stopped from edge

host devices.

2.7 Summary

In this chapter, SDN architecture and SDN security have been discussed. The dis-

cussion starts with the technologies that led to SDN followed by the comparison of

security approach in traditional network and SDN. OpenFlow basics are also part of

the discussion. A comprehensive review of the SDN architecture and interface coupled

with SDN development platform is discussed. Security issues and vulnerabilities SDN

is exposed to is also examined. A brief overview and classification of DDoS attack

that SDN is prone to is also presented. From the review, it is easier to spot the vul-

nerability of SDN architecture to DDoS attacks and effort has been made to device a

means of detecting and mitigating this form of attack to make SDN more secure. The

next chapter delves into DDoS attack strategy and detection techniques employed to

identify normal from abnormal traffic.

30

3
Detecting DDoS attacks in Software

Defined Networks

3.1 Introduction

One of the known forms of network attack that threatens SDN architecture is DDoS

attack. DDoS attack is aimed at consuming available resources of network devices;

hence, making it impossible to access by legitimate users. Also, it can be launched to

consume network bandwidth by compromising network traffic.

The number of successful DDoS attacks launched has seen an increment at an

alarming rate over the last decade [98]. Shade of attacks seem to be evolving per

launch and several detection and mitigation techniques are been offered by different

companies. Although these companies claim to protect enterprise networks, govern-

ment and other critical sectors, their progress is not as impressive as claimed. This

setback is due to lack of attack information on the frequency, duration, number of

agents machines, attempted response, effectiveness and damages suffered as a result

of the DDoS attack. Figure 3.1. shows the rising scale of DDoS attack in the last 10

years. It can be seen that DDoS attack magnitude on networks increased in the last

five years as compared to attack magnitude witnessed in previous years. This attack

strength may be attributed to exploitation of vulnerabilities found in Internet of Things

(IoT) devices and continued use of amplification techniques to maximise the scale of

attack [75].

Chapter

31

 3.2 DDoS Attack Detection in Traditional Network

Figure 3.1: Rising scale of DDoS attack experienced in the last 12 years

[98]

Due to the global view and monitoring of network provided by SDN, anomaly in

network traffic can be detected in real time and mitigated from a central controller.

Currently, service providers are in the process of deploying SDN trial versions or in-

vestigating how this technology can be leveraged on to mitigate DDoS attacks [98].

3.2 DDoS Attack Detection in Traditional Network

Since the emergence of DDoS attacks, variety of both attacks and defence mechanism

is overwhelming. A comprehensive DDoS attack overview and defence mechanism is

presented in [91]. The authors classify defence mechanism based on activity level and

by the degree of cooperation.

The use of dynamic resource allocation can also help in accurately detecting DDoS

attack [144]. The authors present a dynamic way of utilising reserved cloud resources

to cloud customers under DDoS attack using queueing theory based model to ensure

the availability of cloud services to benign users.

Another popular detection method is the use of machine learning [50]. In [50],

Radial-basis-function neural network model is proposed. A small number of statistical

features is employed to describe attack behaviour and classify attack traffic. These

features implement a passive monitoring system and report high detection rates. Sim-

ilarly, the authors in [80] propose a clustering based detection method. This method

32

 3.3 DDoS Attack Detection in SDN

employ entropy value on select attributes and then clustered to recognise the phases of

attack.

A detection approach that involves the use of correlation analysis in data centre

network is presented in [140]. The model predicts flow classes based on the k closest

training in the feature space and evaluates the influence of correlation analysis.

3.3 DDoS Attack Detection in SDN

Different techniques have been proposed in the detection of DDoS attack in SDN. In

[38], flow events are collected from switch interface and a sequential probability ratio

test which has bounded false positive and false negative error rates threshold is applied

to make a decision and locate compromised interfaces.

The use of entropy in identifying anomaly from normal flows have been explored

in [135][93][89]. Entropy can measure the randomness of benign and malicious traffic

and good detection accuracy can be obtained using suitable window size and appropri-

ate threshold.

Rate limiting has also been applied in DDoS attack detection and mitigation in SDN

[79] [83]. Rate limiting can shield the network from complete outage during DDoS

attack. However, all flows are affected in this approach and response time increases

for legitimate traffic.

3.4 DDoS Attack Strategy

Numerous DDoS attack methods are being used to degrade the performance or avail-

ability of targeted network equipment. These attacks can be classified broadly as net-

work or application level attack. A successful DDoS attack generally follows the fol-

lowing steps:

• An attacker scans the network for vulnerable active host.

• The vulnerable hosts are then compromised for exploitation.

• Finally, compromised hosts are used to an launch attack on victim.

33

 3.4 DDoS Attack Strategy

Figure 3.2. Shows a typical DDoS attack strategy. The attack strategy and how it

affects SDN is presented in the vulnerability section

Figure 3.2: DDoS Attack Strategy

3.4.1 Vulnerability of SDN to DDoS Attack

Seven threat vectors have been identified in [77]. Three of the identified vectors

namely: (1) Attack on control plane communications (2) Attack on vulnerabilities

in controller and (3) Lack of trust mechanisms to ensure communication between the

controller and management applications are specific to SDN. Hijacking the communi-

cation channel between OpenFlow switches and controller could be a potential launch-

pad for DDoS reflection attack or traffic redirection for malicious gains.

In the case of a vulnerable controller, the use of common IDS may not be sufficient

as it may be hard to determine the exact combination of events that trigger abnormal

traffic behaviour [77]. To further clarify this vulnerability, a DDoS attack process in

SDN is presented in Figure 3.3.

In Figure 3.3, the malicious user crafts a packet and send to the victim. In a

situation where there is no match entry rule in the table of the OpenFlow switch, the

OpenFlow switch encapsulates the header of the packet and sends a packet in message

to the controller for instruction. The controller decrypts the packet in message and

34

 3.4 DDoS Attack Strategy

Figure 3.3: DDoS attack process in SDN

calculate the appropriate route to the destination address based on the installed rule

(drop, forward packet to port, send) on the controller. Packet out message is generated

and a new flow rule is installed on the OpenFlow switch table. Then, the OpenFlow

switch forwards the packet to the destination address.

It is worthy of note that if a malicious user spoof source IP address and generates

spurious packet in messages at specified intervals, more packet in messages will be

sent to the controller making the data and control plane resources vulnerable to flood-

ing attack depending on attack strategy deployed [35]. Hence, the need to build a

robust flooding attack detection algorithm in SDN controller.

Associated risks DDoS attack pose on SDN can be summarised as follows:

• Network devices at data and control plane buffer capacity is limited

• DDoS attacks change rate of flow of network traffic dynamically and employ

multistage attack depending on the nature and strength of the attack

• DDoS attacks change rate of flow of network traffic dynamically and employ

multistage attack depending on the nature and strength of the attack

35

 3.5 Types of DDoS Attacks in SDN

• For every new flow, the switch sends packet in message to the controller. As a

result, DDoS attack can exhaust the communication channel between switch and

controller.

• The controller represents the brain of the network and it controls the underlying

data plane devices by installing flow rules. Hence, single point management

failure can be attained by compromising the availability of the SDN controller.

The aim of identifying potential security flaws in SDN is not to project it as a weak

innovation in network architecture but rather to build a robust security measure around

the controller to detect and mitigate both known and unknown security breach.

3.5 Types of DDoS Attacks in SDN

In this section, a brief description of DDoS attacks launched during this simulation is

presented.

3.5.1 ACK Flood

A large number of ACK packets, usually not related to open connection is sent to the

victim server. As a result, available system resources to evaluate legitimate incoming

packets are exhausted. ACK flood attack can be used as a smokescreen for more ad-

vanced attacks as the packets usually go through routers, firewalls and other intrusion

prevention/detection system [117].

3.5.2 SYN Flood

SYN flooding attacks exploit known vulnerabilities in a 3-way handshake that begins a

TCP connection. The goal of SYN flooding is to deplete the backlog of Transmission

Control Block (TCB) that holds all information about a connection as shown in Figure

3.4. This is done by sending a large number of SYN request to the server. The server

replies to the request by sending SYN + ACK packet and waits for the ACK response

from client. The malicious user does not send ACK packets and the server waits for

non-existent ACK message. Hence, the buffer queue of the server becomes full and

incoming valid requests are dropped [117].

36

 3.6 Experimental Approach

Figure 3.4: progression of SYN flood attack

[110]

3.5.3 Slowloris

Slowloris attack opens multiple connections to the victim’s web server and keeps them

open for as long as possible. In this attack, partial HTTP requests are sent and sub-

sequent headers for each request is sent to keep the connection open, but the requests

are never completed. Ultimately, the victim’s maximum concurrent connection pool is

filled and legitimate connection attempts are denied afterwards [117].

3.6 Experimental Approach

In this section, a brief description of the experimental setup is presented. And then we

investigate the feasibility of DDoS detection mechanism by several TCP SYN Flood,

ACK flood and Slowloris attacks performed.

3.6.1 Experimental Setup

Mininet software [90] was used to create the tree network topology shown in Fig-

ure. 3.5. The mininet emulator is an open source network emulator capable of creat-

ing a realistic virtual network, running real linux kernel, switch, application code and

37

 3.6 Experimental Approach

devoted entirely to OpenFlow architecture and SDN implementation. Also, we use

OpenDaylight [109] controller (Nitrogen) to deliver SDN platform to make network

adaptive and programmable. For the topology in Figure. 3.5, tree topology is used

which is created by python API of Mininet. For the two experiments carried out, the

bandwidths were set to 10MbPS and 100Mbps to represent Ethernet and Fast Ethernet

connections respectively. These bandwidths were picked to mimic what is obtainable

in the real day-to-day network activities to analyse and detect DDoS attacks [117].

Figure 3.5: Network topology

3.6.2 System Implementation

Depending on the nature of the attack, volumetric attacks which exhaust device through-

put can be detected by monitoring the rate of change of throughput before and during

the attack to detect presence of an attack. As shown in Figure. 3.5, the attacker in

the SDN environment could be a host or a compromised switch. In this work, hosts

in the network have been used to perform attack in SDN. ACK, SYN and Slowloris

attacks are launched on victim’s server connected to switch 2 in Figure. 3.5 to iden-

tify their impact on SDN planes. These attacks have been launched independently by

using conventional attack methods and tools [53]. Table 3.1 provides a summary on

the description of tools used in implementing these attack.

38

 3.6 Experimental Approach

Table 3.1: Simulation parameters description

Simulation Descriptions

Mininet Used for emulating the network topology

Host machine Intel Core i7, 16G RAM

Open Daylight Controller Ubuntu server as the base operating system for Open

Daylight Nitrogen release controller

Oracle virtual box Virtual environment for simulation

Other tools
Pentmenu for launching (Slowloris: using netcat;

TCP ACK Flood: using hping3 and TCP SYN Flood:

using hping3)

iperf tool for monitoring network throughout before

and during an attack

The same attack was launched for both Ethernet and Fast Ethernet link. The steps

followed are explained as follows:

Step 1: Create mininet topology and set bandwidth of 100Mbps for Fast-Ethernet

link and 10Mbps for Ethernet link

Sudo mn --controller=remote,ip=192.168.1.4

--topo=tree,depth=2,fanout=3--link tc,bw=10

Step 2: Confirm connectivity between hosts, switches and ODL controller

>net

>pingall

Step 3: Setup Server in the network to listen at a specified port number and interval

iperf {s {p 80 {i1

In the topology, Hosts 1 was used to generate iperf requests from the server and Host

2 was used as ping probe to monitor packet loss.

Step 4: Launch attack using Pentmenu

Cd Pentmenu

./pentmenu select attack and launch

39

 3.7 Performance Evaluation

Host 3 to host 8 in the tree topology were the compromised hosts made to launch DDoS

attack traffic on victim’s server at 25%, 50% and 75% attack rate respectively. Once

the DDoS attack commenced on the victim, the arrival rate of packets at the server

port becomes higher than the server capacity within a short period. Consequently, the

server could not respond to burst of open connections from either valid or malicious

users. Hence a drop in throughput. Table 3.2 shows the parametric values of attack

traffic launched.

Table 3.2: Parameter used for simulating the attack traffic

Experiment No Attack ra te Hosts involved TCP SYN-FLOOD ACK-FLOOD Slowloris

Experiment 1 25% H5, H7

Experiment 2

Experiment 3

50%

75%

H5, H6, H7, H8

H4, H5, H6, H7, H8,
2.5×105 data-bytes sent 2×105 data-bytes sent 2.5×105 data-bytes sent

H9

3.7 Performance Evaluation

In this study, an experiment for investigating three different attack rates: 75%, 50% and

25% was performed on Fast-Ethernet and Ethernet. The severity response due to the

two media is simulated and presented in Figure. 3.9 and 3.10. Time series data were

generated, and the observations recorded at a regular interval of 1 second. This process

was continuous using the same experimental condition, the stream of measurements

were recorded until the simulation clocks-out at 360 seconds.

Let us suppose the series X = {x(t)|1 ≤ t ≤ 360} denotes the throughputs

recorded at equally spaced discrete time interval of 1 second each. We then present

mathematically the throughputs vector for each of Fast-Ethernet and Ethernet at differ-

ent attack rates as:

x(t) = (x1(t), x2(t), x3(t), · · · , x360(t)) (3.1)

However, we are interested to study the efficacy of the attack rates severity for Fast-

Ethernet and Ethernet. The stream of the simulated throughputs were split into three

components. Where the first component is 1 minute, which has 6 different levels within

the possible outcomes of the experimental time. The second and third components are

2 and 3 minutes, and their levels are 3 and 2 respectively.

40

 3.8 Normality Test

We established the 95% confidence band (see Table 3.5 and 3.6) [39] to enable us

make a robust inference on the basis of probability. Taking α = 0.05, to indicate level of

error tolerance to the experiments. Therefore, we use the method of data condensation

to study the properties of the throughputs distribution by looking at the mean and

standard deviation. We deployed Kolmogorov-Smirnov tests [51], at α = 0.05, the

pvalue = 0.0001 and reject the null hypothesis that the throughputs for Fast-Ethernet

and Ethernet at different attack rates are normally distributed. Since the throughputs

are normally distributed at the indicated level of significance. The confidence band for

detecting attack severity is evaluated in Eqn. 3.2 as follows:

σ
x̄(t) ± Zα{√

n
} (3.2)

where: x̄(t) denotes mean of the throughputs; Zα(±1.645) denotes the theoretical dis-

tribution of the throughputs at α level of significance; σ denotes the dispersion of the

throughputs from the mean and n is the number of instances.

3.8 Normality Test

To test the data obtained for statistical error, normality test using Doornik Hansen,

Shapiro Wilk, Lilliefor and JarqueBera is performed. Figure. 3.6 3.7 3.8 presents the

frequency distribution of the observed FastEthernet values (throughput) against their

frequency. It can be seen that the distribution of the three scenarios without an attack

(SYN, ACK and Slowloris) is bell shaped and well modelled by a normal distribution

[51]. In both frequency distribution for FastEthernet and p-values obtained in Table

3.3 for ethernet, both data follows a normal distribution. Hence, a justification for

comparison with attack scenario for skewness.

Table 3.3: Normality test for Ethernet data without attack

Normal
Doornik-

Hansen

test

Shapiro-

Wilk

Lilliefors

test

Jarque-

Bera test

TS P-Value Remark TS P-Value Remark TS P-Value Remark TS P-Value Remark

EACK 24.25 5.41e-006 Normal 0.85 5.04e-018 Normal 0.295 0 Normal 15.17 0.0005 Normal

ESYN 26.23 2.0048e-006 Normal 0.857 1.139e-017 Normal 0.283 0 Normal 61.27 4.95e-014 Normal

ESLOW 50.38 1.148e-011 Normal 0.85 9.42e-018 Normal 0.272 0 Normal 101.106 1.109e-022 Normal

41

 3.8 Normality Test

Figure 3.6: Frequency distribution of Fast-Ethernet Link without ACK attack

Figure 3.7: Frequency distribution of Fast-Ethernet Link without SYN attack

42

 3.9 Result and Discussions

Figure 3.8: Frequency distribution of Fast-Ethernet Link without slowloris attack

3.9 Result and Discussions

Two experiments were completed using the network topology presented in Figure. 3.5.

In the first experiment, we use bandwidth of 10Mbps for the Ethernet link and Fast-

Ethernet bandwidth of 100Mbps for the second experiment. In both cases, ACK, SYN

and slowloris attacks were launched and the data collated.

3.9.1 Effect of DDoS Attack on the Server

As shown in Figure. 3.9-3.10, the performance of the server appears as a decreasing

function of the server capacity. FACK represents throughput without attack for a dura-

tion of 360 seconds while FA75, FS75 and FSL75 represent SYN, ACK and Slowloris

throughput values at 75% attack rate respectively. The impact of the attack launched by

compromised hosts 3-8 is observed after 75 seconds of transmission with a bandwidth

utilisation degradation (a sharp dip as shown in Figure. 3.9. For FA75, A spike can be

seen at 81seconds indicating a sign of recovery from the attack. However, the server

was rendered completely unavailable for the rest of the transmission. The observed

trend is similar for ACK, SYN and slowloris attack launched on the Ethernet network

43

 3.9 Result and Discussions

shown in Figure. 3.10.

The simulation result in Figure. 3.9-3.10 shows that ACK, SYN and Slowloris all

have a negative effect on the server and is capable of rendering it unavailable within

minutes of successful attack launch.

Figure 3.9: Effect of DDoS attack on server throughput for Fast-Ethernet

44

 3.9 Result and Discussions

Figure 3.10: Effect of DDoS attack on server throughput for Ethernet

3.9.2 Severity of DDoS Attacks on Server

Figure. 3.11 and Figure. 3.12 shows the visual distribution of traffic data before and

during the attack. In Figure. 3.11, the 75% attack shows a large variation from the cen-

tral tendency and quite a number of packets are skewed towards the lower end of the

range which is similar for the SYN and ACK attack. Similarly, the 50% and 25% attack

scenarios show mild variation. For the fast Ethernet, the server was made completely

unavailable in the three attack scenarios. The plot without attack is more condensed

which means it varies less and more consistent without outliers. Hence, prediction is

more dependable and shows the severity of the 75%, 50% and 25% attack scenarios.

In Figure. 3.12, the 75%attack is severe as it is the only one with outliers that made

the server completely unavailable for the ACK and SYN attack. It can be observed

that the 25% attack scenario for ACK and SYN had a better upper quartile than 50%

attack scenario even though they all exhibit variations based on severity for without

attack scenario. In both cases, the slowloris attack open large connections and com-

45

 3.9 Result and Discussions

pletely overwhelmed the server resources, which consequently makes it unavailable.

The variation in upper quartile shows the severity of attack in the network when 50%

and 25% is compared with 75% attack rate.

Figure 3.11: Severity of Attack on Fast-Ethernet Link

46

 3.9 Result and Discussions

Figure 3.12: Severity of Attack on Ethernet Link

3.9.3 DDoS Detection Accuracy

The increase in detection window affects the prediction accuracy. It can be seen from

Table 3.4 that increment of 1 minute reduces the prediction accuracy by 46%, 28%

and 40% respectively for ACK, SYN and slowloris attack. Also, an increase of 2 min

reduces the accuracy by 60%, 52%, 59% respectively for the Ethernet link. The result

is significant as it shows that the server’s performance can be brought down in under

2 minutes as seen in Figure (3.9-3.10) for the modelled attack scenarios and should

not be ignored. Therefore, a suitable detection window of one minute can help detect

DDoS attack with 99% accuracy.

The justification for one minute detection window is not far-fetched. It can be seen

from Figure. 3.11 and Figure. 3.12 that server capacity degradation occurred in less

than 2 minutes. Hence a detection window of one minute with high accuracy is suitable

for detection of DDoS flooding attack in SDN. It can be argued that a detection window

of 30 seconds or less will be more suitable in detecting DDoS attack. However, this

will require fast processing capacity and introduce overhead and resource utilisation on

47

 3.9 Result and Discussions

the controller or data plane devices. In [93], it has been stated that there is an increase

in CPU usage with respect to window size. The goal is to reduce overhead as much as

possible while getting optimum performance from the controller.

Table 3.4: Detection accuracy for varying window size

Scenarios DDoS Attack 1 min 2 min 3 min

 TCP-ACK 99.88% 53.84% 35.89%

Ethernet TCP-SYN 99.96% 71.94% 47.96%
 Slowloris 99.94% 60.06% 40.66%
 TCP-ACK 99.51% 60.89% 41.14%
Fast-Ethernet TCP-SYN 92.93% 53.34% 35.57%

 Slowloris 98.83% 60.72% 40.40%

3.9.4 Effect of DDoS Attack on Mean Throughput using different

Window Size

Table 3.5 and 3.6 presents a detailed description of analysed data in detecting attack

with 95% confidence interval. X75, X50 and X25 represents mean throughputs at

75%, 50% and 25% respectively. The results in both cases (FastEthernet and Ethernet)

highlight the fact that the mean throughput drops drastically after every minute in the

presence of an attack. The result is significant as it shows that an increase in volume of

attack reduce the value of throughput which in turn have effect on the mean throughput

for sampled window size

48

 3.9 Result and Discussions

Table 3.5: Ethernet simulation table

95% confidence band for ACK X̄75 X̄50 X̄25

 9556 9564 9566
 745.6 4189.7 4866

9565 ± 2.1 (after every 1 minute)
0.2 2618.3 5241

0.4 4823.8 5460

0.6 3600.5 5251

 1.7 3534.4 5246

9565 ± 1.9 (after every 2 minutes)

5151 6877 7216

0.3 3721.1 5358

1.5 3567.6 5249

9565 ± 1.9 (after every 3 minutes)
3434 5457 6630

0.9 3986.3 5246

95% confidence band for SYN X̄75 X̄50 X̄25

 9564 9565 9527
 4200 7142 920.1

9565 ± 2.2 (after every 1 minute)
0 2194.9 6034

0.2 728.9 3124.6

4.6 4567.1 669.3

 0 5707 7258

9565 ± 1.5 (after every 2 minutes)

6882 8353 3723.5

0.1 1462 4580

2.3 5137.1 6963.5

9565 ± 1.8 (after every 3 minutes)
4588 6300.5 4493.8

1.6 3668 5683.8

95% confidence band for Slow-loris X̄75 X̄50 X̄25

 9564 9564 9565
 1927.3 2808 4080

9565 ± 4.5 (after every 1 minute)
178.5 27.1 15.3

0 23 9.2

0 11.5 0

 937.1 0 0

9565 ± 3.3 (after every 2 minutes)

5746 6186 6822.4

89.3 25 12.3

468.6 5.8 0

9565 ± 2.4 (after every 3 minutes)
3890 4132.9 4553

312.4 11.5 3.1

49

 3.9 Result and Discussions

Table 3.6: Fast-Ethernet simulation table

95% confidence band for ACK X̄75 X̄50 X̄25

 91228 87603 89633
 19642.8 1432 2368.2

91360 ± 321 (after every 1 minute)
0 0 0

0 0 0

0 0 0

 0 0 0

90516 ± 528.1 (after every 2 minutes)

55435.6 44518 46001

0 0 0

0 0 0

89423 ± 401.3 (after every 3 minutes)
36957.1 29678 30667

0 0 0

95% confidence band for SYN X̄75 X̄50 X̄25

 86413 87705 86353
 12573 5775 11765.8

92867 ± 123 (after every 1 minute)
27.2 0 63

2224.2 0 0

0 0.2 0

 0 0 0

92561 ± 232.5 (after every 2 minutes)

49493 46740 49059

11.3 0 31.5

0 0.1 0

92619 ± 160.9 (after every 3 minutes)
33004.5 46740 32727.4

741.4 0.1 0

95% confidence band for Slow-loris X̄75 X̄50 X̄25

 90440 88240 91118
 20412.3 27612 37886.2

91182 ± 324.9 (after every 1 minute)
62.5 27.7 15.8

61.6 27.5 18.9

36.9 7.9 15.9

 7364 12231 15.7

90977 ± 305.1 (after every 2 minutes)

55426 57926 64502.3

62.1 27.6 17.3

3701 6119 15.8

91272 ± 244.8 (after every 3 minutes)
36971.6 38626.7 43007

2488 4089 16.8

50

 3.10 Machine Learning Approach to DDoS Attack Detection in SDN

3.10 Machine Learning Approach to DDoS Attack De-

tection in SDN

Machine learning is a wide inter-disciplinary area of research which involves learning

patterns from datasets for computer to perform a specific task without explicit instruc-

tions. Building a predictive machine learning models has found application in de-

tecting DDoS attack in SDN. Five machine learning methods were applied to existing

DARPA dataset with SVM giving the highest detection accuracy and less false positive

rate [74]. However, the analysis presented is not compared with dataset received from

emulated software defined network environment.

An unsupervised artificial neural network, Self-Organising Maps (SOM) has also

been applied in detecting flooding attack in SDN [16]. Using 6-tuple features to train

the traffic flow, the proposed method is able to achieve high detection rate and low

rate of false alarm in less computation (CPU) times as compared to other methods

involving KDD-99 dataset.

Application of XGBoost, an extreme gradient boosting algorithm classifier to de-

tect DDoS can be found in [27]. The result shows better detection accuracy and lower

false positive rate as compared to three other machine learning algorithms when ap-

plied in SDN-based cloud.

Another interesting approach to detecting DDoS attack in SDN is Deep Learning

[82], [128]. Although some novel machine learning techniques have been applied to

DDoS detection in SDN, most of them employ the use of KDD and NSL-KDD dataset

with very few extracting real network dataset from SDN configuration.

All DDoS detection techniques leverage on identifying key features such as traffic

flow metrics relevant to identify malicious traffic from benign traffic. Our emulated

network scenario is simpler and mimics network architecture obtainable in a mid-sized

enterprise network with focus on three key real-time traffic features obtained from

emulated SDN architecture in classifying ICMP, UDP and HTTP flooding attacks.

51

 3.11 Proposed solution

3.11 Proposed solution

In this section, a custom tree topology is built to extract real SDN data. The extracted

data is fed into machine learning algorithms to classify DDoS attacks using six ma-

chine learning algorithm.

3.11.1 System Architecture and Setup

A custom network topology has been designed using Mininet emulator [90] to address

the problems highlighted earlier. Tree topology is considered because it can be easily

adopted for wide area network and it offers easy expansion of node.

The custom topology shown in Figure 3.13 is implemented on 32G RAM Intel

Xeon E3-1220 processor with Kali Linux as the base operating system. The floodlight

controller [49] is deployed in the VirtualBox VM running Ubuntu 18.10 LTS while

Mininet software is deployed on VirtualBox VM running Ubuntu 16.10 LTS.

The modelled network comprises of 10 OpenFlow switches and 16 hosts which are

connected using 100Mbps link. The essential software tool includes iperf which is used

to create a client-server relationship and Low Orbit Ion Canon (LOIC)[22]to generate

DDoS flooding attack. Using iperf and ping commands to generate legitimate traffic

between the host and server, system properties such as response time, throughput and

jitter values generated were recorded per seconds for a duration of 15 minutes.

In the attack scenario, assumption was made that attack is from internal source.

Hence, compromised hosts within the network were used to launch HTTP, TCP and

UDP flood attack on the server for 15 minutes respectively and results recorded from

the server.

3.11.2 Data Collection

Machine learning approach for anomaly detection relies on the profile of normal datasets

and flag deviations from such profile as attack [124]. The effectiveness of any machine

learning algorithm is based on its performance to identify anomalies. This requires a

comprehensive dataset that contains normal and abnormal network traffic. As a result

of this, the need for data integrity and accuracy to build a robust detection system is

imminent. However, available benchmark DDoS attack dataset poses a challenge in

52

 3.11 Proposed solution

Figure 3.13: Modelled SDN tree architecture

accurately building detection and mitigation algorithm. The KDD99 dataset contains

a number of redundant records in the dataset, this in turn often lead to bias in detection

results towards the frequent records in training set [86]. Similarly, there exist multiple

records which is a factor in changing the nature of the data [87].

A new dataset containing modern DDoS attack in SDN was collected and anal-

ysed to overcome the limitation of existing benchmark datasets such as: (1) lack of

modern footprint attack fashion in SDN (2) variation in normal traffic recorded with

less connected devices few years ago and (3) variation in the attack distribution of old

benchmark testing set and new training set [94].

Our collected dataset includes three types of DDoS attack and involves realistic ac-

tivities of normal traffic that were captured from the server every 15 minutes. The over-

all data before processing amounts to 1.6 GBytes. Figure 3.14. Shows the data clean-

ing process employed to arrive at the dataset for classification with a brief overview.

Pre-processing: Network traffic is collected and converted to .txt file

53

 3.11 Proposed solution

Figure 3.14: Data collection and cleaning steps

Feature extraction: We use Knime to extract basic features (response time, jitter,

and throughput) and remove duplicate records

Dataset: Data arranged in row and column format with no missing data.

The identified data integrity challenges form the motivation to create dataset for

normal and DDoS attack traffic in SDN environment to evaluate its effect and how

accurate attacks can be predicted and classified using ML algorithm.

3.11.3 Classification methodology

Machine learning algorithms iteratively learn from data and automates models to find

hidden insight and predict or identify anomaly without being explicitly programmed.

The ability to identify deviation in traffic flow makes it suitable for detecting DDoS

flooding attack.

There are lots of approaches to machine learning usage in terms of classification

and prediction. However, the most important is selecting the model that best fits the

training data. Accuracy of the predictive model is important because it determines the

quality of resultant predictions and forms the scientific evidence for decision making

and policy. Six machine learning algorithm (linear and non-linear) is used in this

experiment and are discussed below:

54

 3.11 Proposed solution

3.11.3.1 Logistic Regression

Logistic regression (LR) is a form of predictive modelling technique which can be used

to describe data and explain the statistically significant relationship between dependent

variable and independent variable. LR is very efficient and does not require too much

computational resources.

Rather than using ordinary least square method to fit model and derive coefficients,

LR coefficients are usually estimated using the maximum likelihood method to itera-

tively fit the model. Hence, LR has low variance and is less prone to overfitting. LR

assumes a Gaussian distribution for numeric input variables and is suitable for mod-

elling binary classification problems.

3.11.3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a statistical technique for binary and multiclass

classification with a focus on exploiting the separability among known categories by

maximising the distance between means and minimising the variation within each cate-

gory. LDA makes predictions by modelling the distribution of predictors (set of inputs)

separately in each of the response classes and then use Bayes’ theorem to estimate the

probability. The class with the highest probability is the output class predicted.

One of the advantages of LDA is that it has closed form solutions that are easily

computed and no hyper parameters to tune [142].

3.11.3.3 K Nearest Neighbour

K nearest neighbour (KNN) is easy to implement feature similarity supervised learning

algorithm that can be used for classification and regression analysis. It makes a general

assumption that similar features exist in close proximity. KNN use distance metric to

find K similar instances in the training data for new instances and takes the mean

outcome of the neighbours as prediction [30].

The accuracy of KNN prediction relies on selecting the right k value. As K in-

creases, predictions become stable due to majority voting up to a certain point without

introducing error. Conversely, as the value of K decreases to 1, predictions become

unstable.

55

 3.11 Proposed solution

KNN is robust to noisy training data and learns complex model easily [9]. The

main drawback of KNN is the complexity in searching the nearest neighbours for each

sample (high computation cost).

3.11.3.4 Naive Bayes

Nä ıve Bayes calculates the prior probability of each class and the conditional proba-

bility of each class given each input value. In Bayesian analysis, these probabilities are

estimated for new data and the final classification is produced by multiplying the prior

probability with conditional probability [105].

Nä ıve Bayes can handle an arbitrary number of independent variables which makes

it suitable in classifying data with high inputs dimensionality. In analysing real-valued

continuous data, Gaussian distribution may be assumed to estimate the probability of

input variables using the Gaussian Probability Density Function (PDF).

Although Nä ıve Bayes is easy to implement, it suffers from the general assumption

that predictors are independent which is almost impossible to get in real life cases [26].

3.11.3.5 Classification and Regression Tree

Classification and regression tree (CART) is a decision tree algorithm proposed by

Breiman et al. for predicting continuous dependent variables and categorical predictor

variables [17]. The models are obtained by recursively partitioning two child nodes,

beginning with the root node that contains the whole learning sample and fitting a

simple prediction model within each partition [81].

Split points are chosen by evaluating each attribute and value in the training data

in order to minimise the cost metric. In CART, prediction error is typically measured

by the squared difference between the observed and predicted values.

CART gives comprehensive information and all possible solutions based on the

dataset. However, variations in input data can at times cause large changes in the tree

or possibly require redrawing the tree.

3.11.3.6 Support Vector Machine

Support vector machin (SVM) is a supervised machine learning technique for both

regression and classification tasks. The objective of SVM is to choose hyperplane

56

 3.12 Result and Discussions

in an N-dimensional space (where N – represents number of features) that optimally

differentiate classes with the maximum margin. Hyperplanes are decision boundaries

that help classify data points. Data points closest to the hyperplanes are called support

vectors and they influence orientation and positioning of the hyperplane [131].

SVM is capable of solving problems with nonlinear decision boundaries and has

been extended to support multiple classes using different kernel functions such as ra-

dial basis, Gaussian and polynomial function. SVM can be subject to overfitting if the

kernel parameters are not carefully tweaked.

All the discussed machine learning techniques are implemented using Scikit-learn

platform [106].

3.12 Result and Discussions

3.12.1 Evaluation metrics

To evaluate the performance of the six ML algorithm applied on the obtained dataset,

we use primary performance indicators such as accuracy, precision and recall values.

The performance indicators are calculated using four different measures, True Posi-

tives (TP), True Negative (TN), False Positive (FP) and False Negative (FN):

• TP: outcome where model correctly predicts positive class

• TN: outcome where model correctly predicts negative class

• FP: outcome where model predicts positive class wrongly

• FN: outcome where model predicts negative class wrongly

Each ML technique has its unique characteristics to learn, predict and evaluate data

points to classify and detect attacks based on the applied tuning parameters.

Accuracy: Accuracy represents the total number of correct predictions divided by

the total number of cases. It can be represented mathematically as:

TP + TN
Accuracy =

TP + TN + FP + FN
(3.3)

57

 3.12 Result and Discussions

Precision: Precision is the total number of True Positives (TP) divided by total

number of predicted positives.

Precision =
TP

TP + FP
(3.4)

Recall or sensitivity: Recall is the proportion of correct positive classification (TP)

from the total number of actual positives.

Recall =
TP

TP + FN
(3.5)

Recall and precision is a more stringent form of how good a classification algorithm

is.

3.12.2 Experimental results

3.12.2.1 Attributes correlation matrix

Correlation between each pair of attributes gives an indication of how related the

changes between them are. Figure 3.15, shows how changes between throughput,

jitter and response time are related. It is worth noting that each variable is positively

correlated with each other as seen in the diagonal line from top left to bottom right.

58

 3.12 Result and Discussions

Figure 3.15: Correlation matrix plot of throughput, jitter and response time

3.12.2.2 Prediction accuracy

To evaluate the complexity of the dataset in terms of accuracy, six ML algorithms

(LDA, LR, KNN, SVM, NB and CART) are employed. The algorithms are imple-

mented in Scikit-learn. Using k-fold cross validation, we set values of k = 3 , 5, and 10

to evaluate the performance of the selected ML algorithms. Figure 3.16 represents the

comparison between the 3, 5 and 10 fold cross validation. For all the algorithm, 10-fold

cross validation gave satisfactory accuracy. Hence, we use 10-fold cross validation for

training and testing our dataset.

Figure 3.17 shows the box plot comparison of the algorithms. The CART algo-

rithm achieved the highest accuracy (i.e. 98.47%) followed by KNN with 97.01% and

the lowest was LDA with an accuracy of 96.07%.

Overall, the results of the accuracy of these algorithms show that CART can detect

UDP, TCP and HTTP flood attack from normal (attack free) SDN traffic flow having a

small number of features with promising accuracy.

59

 3.12 Result and Discussions

Figure 3.16: Algorithm prediction accuracy for k = 3, 5 and 10

Figure 3.17: Box plot comparing algorithm performance

60

 3.12 Result and Discussions

3.12.2.3 Precision and Recall

Relying on only accuracy may not be sufficient in selecting the optimum classifier

especially for real time DDoS attack data. Hence, the need for precision and recall.

Figure 3.18 and 3.19 shows the precision and recall comparison of the six ML algo-

rithms for each class of attack. With the exception of LDA and LR, all other algorithms

achieved 100% precision in identifying normal traffic. Similarly, all algorithm had per-

fect precision for UDP flood except NB which is slightly lower. CART also achieve

high precision and recall rate in classifying other three classes of attack.

It is worthy of note that all classifiers performed well with high precision and recall

values. In general, CART produced high accuracy, good precision and recall rate more

than other classifiers. Hence, a better classifier for detecting flooding DDoS attack in

SDN with promising performance results.

Figure 3.18: Performance of classifier in terms of precision

61

 3.13 Summary

Figure 3.19: Performance of classifier in terms of recall

3.13 Summary

In this section, effect of DDoS attack on SDN is examined. Related work on attack

detection in both traditional network and SDN is reviewed. Firstly, custom topology is

designed using mininet and three DDoS(SYN, ACK and slowloris) attack launched on

the server. A statistical approach is designed to detect attacks and attack window size

of 1 minute gave more accurate detection accuracy. Similarly, tree topology is designed

and machine learning based approach is applied to the extracted traffic. The models

were validated using six machine learning algorithm and CART algorithm achieved

high detection accuracy of 98.47% with only three features namely: throughput, jit-

ter and response time when compared to other machine learning algorithm deployed.

Hence, CART exhibits strong potential DDoS flooding attack detection in SDN envi-

ronments.

62

4
Reconnaissance, Attack Launch and

Mitigation

4.1 Introduction

In today’s rapidly evolving network, attackers are often one step ahead. A good means

of classifying security attacks is in terms of passive and active attacks. Passive at-

tacks attempt to learn or make use of the system without affecting the host resources

while active attacks alter resources, system operations or shut it down completely in

severe case. Hence, protection of networks and their services from unauthorised ac-

cess, destruction, modification and disclosure becomes imminent. Proactive detection

and prevention mechanisms can help keep activities of malicious users in check.

4.2 Understanding Network Environment

The battle for a secure network against DDoS attack remains a daunting task to which

network security specialists must always be at alert. To stay one step ahead of mali-

cious users, it is necessary to have a good understanding of the network environment.

Unfortunately, due to financial incentives and readily accessible DDoS attack code

with stable releases over the years, malicious users are launching variants of DDoS

attack and exploiting vulnerabilities in networks. As a result, the race seems unending

and open avenues for innovation in securing networks. Having a good understanding

Chapter

63

 4.2 Understanding Network Environment

of the network environment simplifies the attack process for malicious users. Getting

to know the environment and launching an attack can be broken down into four steps

[45]:

• Information gathering: this stage involves sourcing information publicly avail-

able using social engineering to gain information about target. The drawback of

this stage surprisingly is having too little data or too much information to make

sense out of the exercise. Data gathered in this stage can be IP address, soft-

ware version, network equipment manufacturer and types of protocol running

on network devices. This stage is often referred to as footprinting as well.

• Scanning: scanning involves utilising data obtained from footprinting to locate

active hosts. The first activity involves port scanning for open ports and potential

service running on it. Port scanning is then followed by vulnerability scan to

identify specific weaknesses and services and software of targets.

• Exploitation: vulnerabilities detected during scanning is exploited to gain access

to the network where attack is launched. Depending on how vulnerable the net-

work is, guest account privilege can be escalated here to full administrative right

to take charge of the network resources.

• Covering tracks: Malicious users try to eradicate evidence of gaining access

to targets. This is done by deleting system log files created during the hacking

phase to prevent being noticed or detected by intrusion system in the network. In

some cases, malicious users often plant backdoor in order to gain access without

going through the initial stages.

The enumerated steps can be performed using Linux distributions such as Kali Linux

or Backtrack. In this experiment, Kali Linux is the tool of choice.

4.2.1 Available Attack tools for gathering information

Several penetration testing procedures can be observed to assess the overall security

of an organisation’s system and to locate network/system vulnerabilities. Table 4.1

and 4.2 shows open source web and DDoS attack tools that can be used to gather

information from network and launch attack [13].

64

 4.3 Model Formalisation

Table 4.1: Open source tools to gather information

Tools Definition

NMAP Free security scanner showing which hosts are avail-

able on the network and creates a network map of

hosts

BRUTUS Flexible remote password cracker utilities that guess

passwords by using dictionary and permutations

thereof

NESSUS A vulnerability scanner that provides ability to audit

network, produce a list of vulnerabilities and compli-

ant security tools

Google hacking Provides advance operators to query and obtain data

using ever-widening reach of Google search engine

Table 4.2: Open source DDoS Attack tools

Tools Definition

LOIC Open source stress tool to flood server with TCP

packets or UDP packets to disrupt service

HULK Open source Web server DDoS attack tool

Mirai Malware tool to infect IoT devices to launch DDoS

attack

Net-Weave Booter written in .NET with USB spreading capabili-

ties to launch TCP and UDP flood

The lists in Table 4.1 and 4.2 are by no means exhaustive. New tools are being

developed to scan and secure network on a rolling basis.

4.3 Model Formalisation

DDoS presents a form of security attack where multiple attacks from different loca-

tions in the network target a victim. Since DDoS attack exhausts the resources of the

victim e.g. server, the server refuses new connection from legitimate hosts. It is worth

stating that the server resource exhaustion could be bandwidth or buffer size of the vic-

tim server. In our architecture, a single controller manages 10 switches and 16 hosts

respectively using OpenFlow protocol [127].

Let the transfer of information between the switches in the network with respect to

65

 4.3 Model Formalisation

link path be represented mathematically as follows:

Tswitch = Ci.[S1L1 + S2L2 + S3L3 + ... + S10L10] (4.1)

where Ci = no of controllers in the network

assuming equal link i.e. L1 = L2... = L10 eqn (1) becomes

Similarly,

10

Tswitch = CiL Si (4.2)

i=1

Thost = Ci.[H1J1 + H2J2 + H3J3 + ... + H16J16] (4.3)

where linkJ1 = J2 =

J16

16

Thost = CiJ Hi (4.4)

i=1

Combining eqn. (4) and (2) gives total flow of information in the network as:

Tnetwork = Tswitch + Thost (4.5)

10 16

Tnetwork = CiL

Si + CiJ

Hi (4.6)

Number of controller in the network = 1, therefore Ci = 1

10 16

Tnetwork = L

Si + J

Hi (4.7)

i=1 i=1

i=1 i=1

66

 4.3 Model Formalisation

Table 4.3: model parameters description

Notation Meaning

Ci

Hi

Si

Li

Ji

Tswitch

Thost

Tnetwork

No of controllers in the network

No of hosts present in the network

No of switches present in the network

Link between switches

link between host

Transmission of information between switches

Transmission of information between hosts

Transmission of information within the network

4.3.1 System Architecture

The choice of modelling complexity of a network depend on the amount of information

to be conveyed, the medium of transmission and the depth and width of the interface

(level of interaction) of the system. Each of these is interrelated in common network

topologies available today. This also applies to SDN. For this experiment, a Fat-Tree

topology is designed in mininet [90]. Mininet is an open source network emulator

devoted entirely to OpenFlow architecture and SDN implementation. It can create a

realistic virtual network, running a real Linux kernel, open Vswitch and application

code. Star, torus, linear and other custom topologies can be designed using mininet.

However, Fat-tree topology is chosen for this experiment as it conforms to practical

hierarchical core, distribution and access layer recommended network design. Fat-

tree is one of the most widely-used network topologies. It is a combination of two or

more star networks connected together with a bus and it supports future extension of

network. Fat-tree topology is ideal for workstations located in groups.

In Figure. 4.1, the controller is responsible for providing all of the switches with the

information needed to populate their Ternary Content Addressable Memory (TCAM)

table. Hence, packet forwarding problems associated with loops would be avoided.

The SDN controller updates each of the OpenFlow switches in the network using

OpenFlow protocol with the content of the flow table created by the controller. As

a result, the controller has a global view of the network and set of matching instruc-

tions also referred to as flow can be pushed to OpenFlow switches simultaneously to

67

 4.3 Model Formalisation

Figure 4.1: Fat-tree network topology

mitigate attack or enhance system performance.

Due to the separation of the control and data plane, there exists negligible latency

in the signalling protocol. By the time the controller collects statistics from OpenFlow

switch, the values within the message are most likely out of date based on polling in-

terval and it may not reflect the real-time state of the switch anymore. Fortunately,

for many applications, this slight inaccuracy is tolerable or negligible. These little but

negligible delay in statistics collection for use in real-time is as a result of the separa-

tion of the control plane from the data plane. Although this can be more pronounced

for a controller that is geographically distant from data plane devices with large link

latency. This latency will have to be put into consideration for any reactive algorithm

to be placed in the controller that relies on statistics collection. Figure. 4.2 Shows the

global view of the network from floodlight controller perspective.

The custom fat-tree topology consists of 10 OpenFlow switches connected hier-

archically. At the distribution layer, 4 hosts are connected to each OpenFlow switch

68

 4.3 Model Formalisation

Figure 4.2: Global view of network from controller perspective

making a total of 16 hosts in the network. Each host is tested to ensure connectivity

using ‘pingall’ command and the connections were successful.

69

 4.3 Model Formalisation

4.3.2 Experimental Approach

The simulation approach is presented in four stages as shown below:

• Stage 1: Create network topology The network topology shown in Fig. 4.1 is

designed using mininet emulator and connectivity is established using the fol-

lowing commands:

Sudo mn --controller=remote,ip=192.168.1.4

--topo=tree,depth=2,fanout=3--link tc,bw=10

>net

>pingall

• Stage 2: Scan the network using NMAP In this stage, information about the

number of active network devices is gathered. Information such as target IP

address, open port, device e.t.c. were obtained using intense scan command.

nmap -p 1 65535 -T4 -A -v 10.0.0.1/24

• Stage 3: Launch DDoS attack using LOIC Using one of the hosts to generate

constant traffic to and from the server, throughput, jitter, and response time val-

ues were measured per second. LOIC was used to launch TCP and UDP flood-

ing attack and CPU utilisation from the controller (CPUT) and server (SCPUT)

recorded before the attack (normal scenario) and during an attack.

• Stage 4: Mitigate attack In this stage, the controller pushes out reactive block

flow based on a predefined countermeasure algorithm to mitigate the flooding

attack. Server (SCPUT mitigation) and controller (CPUT mitigation) utilisation

values before an attack (without attack) and during an attack (with attack) were

recorded. Similarly, the jitter values before the attack (UDPB), during an attack

(UDPD) and mitigation(UDPM) were recorded and discussed in section 4.5

70

 4.4 Active Reconnaissance, Attack Strategy and Countermeasure

4.3.2.1 Hardware and Software Settings

The specific software and hardware configuration information are provided in Table

4.4. All experiments were conducted on high performance PC with adequate compu-

tational capabilities. The computer has 32 GB memory, 4 cores Intel Xeon E1234.

Kali Linux is installed as the base OS. Oracle VirtualBox is also installed which runs

Ubuntu 18.04 version for the floodlight controller [49]. Other software utilised in this

experiment are open source as shown in Table 4.4.

Table 4.4: Simulation parameters descriptions

Software and hardware Specification

CPU Intel Xeon CPU E3-1220 V3 @3.10Ghz

Memory 32G RAM 500Gb HDD

Kali Linux Kali-rolling

Oracle virtual box Virtual environment for simulation

LOIC(Low Orbit Ion Canon) V 1.0.8

Ubuntu Bionic V18.04.1 LTS

Mininet Emulator V 2.2.2

4.4 Active Reconnaissance, Attack Strategy and Coun-

termeasure

In this section, we present the three stage approach followed in gathering information

from the network, launching an attack on the network and the associated countermea-

sure taken to mitigate DDoS attack in the network.

Figure. 4.3 shows the methodology flow diagram used in this model. The attack

module represents the active reconnaissance stage where specific information about

the network is gathered. The information gathered at this stage is modified and utilised

to attack the system. In the controller module, system performance is monitored for

abnormal behaviour and a routine is called in the controller to dynamically mitigate

attack and restore the system to working order.

71

 4.4 Active Reconnaissance, Attack Strategy and Countermeasure

Figure 4.3: Methodology flow chart of the reconnaissance and countermeasure

4.4.1 Active Reconnaissance

Information gathering is an essential step needed to gain access to a network. It in-

volves knowing which information is useful for launching an attack and how to extract

it through reconnaissance. One of such information is details of where the targets IP

address starts and stop. For this experiment, Zenmap [101] is the network mapper run

to see the number of active hosts on the network and the vulnerability scanner to deter-

mine the ports open in the network. Zenmap is an open source multi-platform Nmap

security scanner with a graphical user interface capable of scanning large networks fast

from a single host. As shown in Figure. (4.4-4.5), it can be observed that there are 16

active hosts on the network with IP ranging from 10.0.0.1 to 10.0.0.16 and a clue of

the network topology is also provided. The intense scan performed also revealed open

port 5566 on the server with 10.0.0.10 IP address. The gathered piece of information

paved the way for the attack strategy deployed in stage 2.

4.4.2 Attack Strategy

The known fact about new packets coming to the controller is that the destination

hosts/server is within or logically connected to the network of the controller. In this

72

 4.4 Active Reconnaissance, Attack Strategy and Countermeasure

Figure 4.4: Zenmap view of network topology

Figure 4.5: Nmap output with details of server open port

experiment, four key assumptions are made:

• 1. Not every host in the network is the attack target

• 2. The attack is orchestrated through an internal network

• 3. During an attack, the volume of attack traffic is much higher than legitimate

traffic

73

 4.4 Active Reconnaissance, Attack Strategy and Countermeasure

• 4. There is a continuous flow of traffic to the server

The assumptions are made to represent what is obtainable in the real day-to-day

network activities and attack scenarios. Depending on the nature of the attack, high

rate DDoS attacks often have more traffic than legitimate traffic in order to exhaust

network resources and render it unavailable. As shown in Figure. 4.1, the attacker in

the SDN environment could be a host or a compromised switch. In this experiment,

hosts in the network have been used to launch attack on victim’s server connected to

switch 9. These attacks have been launched using Low Orbit Ion Canon (LOIC) [22].

LOIC is an open source DDoS attack application with a GUI responsible for sending

garbage TCP/UDP or HTTP flood requests directed towards victim’s server on selected

port. This attack is further intensified by running an application that changes attack

source IP address within the range of IP address that has been spoofed during the

active reconnaissance phase.

4.4.3 Countermeasure

The best way to mitigate any DDoS attack is to prevent the attack from being launched

in the first place. There exists two main approach to mitigating DDoS attack; pre-

ventive and reactive approach. Due to the centralisation of the SDN controller, it is

easy to effectively monitor network health and proactively reacts to anomalies based

on the detection system in place. The floodlight controller operates reactive rule inser-

tion by default. The controller monitors packet using packet-in messages and a static

flow pusher is used to create a flow proactively prior to malicious packets reaching

the OpenFlow switch. This flow pusher is accessible through the REST API and the

defined JSON string entry is then added to the controller using an HTTP POST com-

mand.

74

 4.5 Result and Analysis

Algorithm 1 Countermeasure Algorithm

Procedure Start

monitor packet in on controller port 6653

for each Switch in Network do

collect the network statistics

Calculate average packet in value @ time t1 = X1
Calculate average packet in value @ time t2 = X2
if X2 > X1
push flow to block attacking switch port

Print log of rule insertion

else continue

end if

end for

end procedure

4.5 Result and Analysis

In this section, we present and analyse the results as follows:

4.5.1 Effect of DDoS Attack on System Response time

Before launching an attack, based on the assumptions stated in section 4.4.2 that there

exists a continuous flow of traffic to the server. Hence, the need to evaluate the average

response time of the system before and during an attack. The ICMP error reporting

protocol consists of echo requests and echo reply to monitor network problems pre-

venting delivery of IP packets. Round Trip Time (RTT) is the time it takes for a data

packet to be sent to a destination plus the time it takes for an acknowledgement of that

packet to be received back at the source. The min response time is the fastest time it

takes to get a response at the source while the maximum response time represents the

time that took the most. The average response time is the sum of all the RTT values

found divided by the total number of RTT samples. Using Ping command, 20 probes

were sent to the server and the average response time recorded for five scenarios. All

packets sent were received. Similarly, an attack was launched and the average response

times during the attack period for 5 scenarios are evaluated as shown in Figure. 4.6 For

each scenario, the minimum response time before an attack is completely negligible

75

 4.5 Result and Analysis

Figure 4.6: Average response time from server before and after attack

compared to minimum response time during an attack. The maximum response time

before an attack did not exceed 7.9 milliseconds. This trend is completely different for

attack scenario as it reaches a maximum response time of 28 milliseconds. In all the

scenarios considered, the response time increased by over 100 percent during attack.

Thus, it is evident that DDoS attack can severely impact response time of server within

a short period and can result in packet loss or render the server completely unavailable

to legitimate users.

4.5.2 Computational Resource Consumption

Figure 4.7 4.8 4.9 4.10 shows the resource consumption rate before an attack, during

attack and mitigation. There is no big difference between the controller CPU utilisation

and server utilisation before the attack. Utilisation fluctuations are around 8% and 60%

on average respectively. Because of the high number of flow during attack, the CPU

utilisation quickly reaches a peak of 62% in less than 80 seconds of attack launch

and reaches 80% for the victim server respectively. During Mitigation, the utilisation

rose by 20% and 10% above the attack utilisation threshold for controller and server

respectively. The overall controller utilisation hovers around 8% and 60% for the server

and controller when completely mitigated. There is a strong correlation between the

normal controller/server utilisation before attack and during mitigation. Hence, low

performance overhead introduced as a result of pushing reactive flow to mitigate the

flooding attack.

76

 4.5 Result and Analysis

Figure 4.7: Controller CPU utilisation under TCP-based attack

Figure 4.8: Server CPU utilisation under TCP-based attack

77

 4.5 Result and Analysis

Figure 4.9: Controller CPU utilisation under TCP-based attack

Figure 4.10: Server CPU utilisation under TCP-based attack

78

 4.5 Result and Analysis

4.5.3 Effect of DDoS Attack on Packet Count

From the above assumptions made that there is a continuous flow of traffic to the server,

it is evident that rate of packet-in and out at any point in time varies and it is not equal

to zero. The rate of flow is seen to be increasing exponentially in Figure 4.11 during

the flooding and spoofing attack. The rate of change of packet-in message is monitored

for abnormality by the controller and information about the server switch port is kept.

A large variation in the value of packet-in message triggers the flow-pusher module to

block the attacking source based on predefined rules.

Figure 4.11: Packet count before and during DDoS attack

79

 4.5 Result and Analysis

4.5.4 Effect of DDoS Attack on Jitter

Jitter represents the variation in the delay of received packets. In Figure. 4.12, using a

buffer size of 208kbytes, the jitter varies between 0.003ms and 0.015ms before attack.

Spiky delay waveform is seen during attack and mitigation phase. The spikes indicate

congestion in the network. The congestion window during the flooding attack is large

and this will lead to packet drops if the congestion time is more than the packet trans-

mission time. This effect can be severe for a voice application running in SDN during

attack.

Figure 4.12: DDoS attack effect on Jitter

80

 4.5 Result and Analysis

4.5.5 Effect of DDoS Attack on Throughput

Figure. 4.13 shows a significant drop in throughput value due to the impact of flooding

attack on the server. The average throughput for requests made from hosts within the

network to the server before the attack is 42 Gbps. TCPB, TCPD and TCPM represent

throughput before, during and after attack mitigation respectively. The impact of the

attack is felt barely 55 seconds after the flooding attack launch and the server was

rendered unavailable for the rest of the transmission. However, when the controller

pushes block flow to the switch port connected to the attacking host in the data plane,

the server regained its capacity and the network is restored within a short while.

Figure 4.13: Effect of DDoS attack on server throughput

81

 4.6 Summary

4.6 Summary

In this chapter, active and passive information gathering to gain understanding into

network topology is examined. The network topology is constructed from scanning the

network and information gathered from the open port is used to launch UDP and TCP

flooding attack. As a result, the effect of UDP and TCP flood DDoS attack on SDN has

been demonstrated. This study reveals that existing controller and data plane devices

are prone to flooding and spoofing attack which degrades network performance within

a short while. It also indicates that these attacks can be mitigated by pushing blocking

flows from the controller to the attacking switch. Our evaluation shows that additional

flow rule insertion to mitigate DDoS flooding attack imposes minimal overhead in

terms of CPU utilisation on the controller and server.

82

5
Sensitivity Analysis of Detection

Parameters

5.1 Introduction

In the last decade, existing works in the literature and industrial collaboration in the

subject of SDN implementation indicates that the wide adoption of the technology is

not far from reach. Realistic models and methodologies for understanding network

traffic behaviour play an important role in facilitating efficient DDoS attack detection

and mitigation. Using simulation data to describe dynamic network traffic characteris-

tic and detect DDoS attacks plays a larger role than traditional mathematical techniques

have played in the past. Application of machine learning to network traffic characteri-

sation has made it more realistic to mimic network traffic pattern and develop a robust

model against security vulnerabilities for multiple reasons. A primary reason is the

reduction of costly investment in data monitoring tools for day-to-day traffic analysis

and performance overhead introduced.

Sensitivity analysis is an ad hoc analysis that relies on historical data. Information

gathered by network administrators and designers helps in planning and responding to

threat to input network parameters deemed sensitive. The full global analysis of all

the historical network parameters gathered to monitor and detect DDoS attack can be

computationally expensive and it may introduce delay in end-to-end communication if

implemented on enterprise network. Hence the need to select a subset of parameters

Chapter

83

 5.2 Sensitivity Analysis

that seemed likely to have strong effects in the detection of anomaly in network traffic.

One-at-a-time local sensitivity analysis (LSA) technique analyses the impact of a sin-

gle parameter on the cost function at a time, keeping the other parameters fixed and is

fast to compute.

5.2 Sensitivity Analysis

Anomaly detection techniques in networks rely on the assumption that variations in

network parameters may have some effect on the state of network performance when

under attack. Several network features such as time-to-live (TTL), throughput, end-

to-end delay, packet drops amongst others are considered input variables to assess the

robustness of detection and to ensure appropriate mitigation technique is deployed.

This approach is memory-intensive and can increase the computation time coupled

with the purchase of a high-performance computing device.

Sensitivity analysis involves the estimation of uncertainty in the output of a model

as a result of different sources of uncertainty in the input[116]. Figure5.1 illustrates the

basic representation of the relationship between input parameters and output response.

Figure 5.1: Sensitivity analysis of relationship between input and output response

Sensitivity analysis offers an efficient approach to assess extent to which detection

results are affected by changes in input network variables. In this context, sensitivity

analysis is aimed at priority setting, to identify the key variables that are major influ-

ence in predicting whether the network is under attack or secure. As a result, sensitivity

analysis provides an understanding of cause and effect reaction between changes in in-

put variables and the corresponding output.

84

 5.2 Sensitivity Analysis

One of the key advantages of sensitivity analysis is that it identifies critical vari-

ables that may be given less consideration when designing a robust detection model.

5.2.1 Types of Sensitivity Analysis

When one or multiple inputs have relatively insignificant sensitivity as compared to

others, the overall dimension of the neural network for training can be reduced by re-

moving them and a smaller size neural network can be successfully retrained to develop

a more efficient model.

5.2.1.1 Local Sensitivity Analysis

Local Sensitivity Analysis (LSA) is the assessment of the local impact of input factors’

variation on a model response by concentrating on the sensitivity in the vicinity of a

set of factor values [147] [149]. In local sensitivity analysis, the values of other input

parameters are kept constant when studying how sensitive an input factor is.

LSA evaluates sensitivity for a single deterministic set of input parameters which

is often based on the partial derivatives of the response with respect to the input pa-

rameters [62] [73]. Given the model F defined as the following system:

y = F(x, γ) (5.1)

The LSA indicates how independent variable x and parameters γ = [γ1, ...,γr] of F

influence dependent variable y.

The main concept of LSA is based on computation, after a training process of

influence of pattern attributes xi, i = 1 ,..., N or model’s parameter γ on the output value

yj, j= 1,..., N,where N and J denote the number of features and outputs respectively

[150] [76]. This influence is characterised by real coefficients Sji

∂yj(x(p), x(p), ..., x(p))

S
(p)

= 1 2 N (5.2)
j,i ∂xi

Equation 5.2 describes the sensitivity value of the jth neural network output signal on

the ith attribute of the input vector x, calculated based on the pth training pattern, p =

1,...,P.

85

 5.3 Artificial Neural Network Application to Sensitivity Analysis

LSA approaches can be informative if there is little uncertainty in model input or

if the inputs act linearly or additively [114]

5.2.1.2 Global Sensitivity Analysis

Global Sensitivity Analysis (GSA)is the study of how uncertainty in the output of a

model either numerical or otherwise can be apportioned to different sources of uncer-

tainty in the model input [113].

GSA considers the impact of varying parameters simultaneously and uniformly

over their full range of possible values [115] [66]. GSA can show the relationship

between multiple input parameters and cope well with linear and non-linear response

[84]. Unlike local sensitivity analysis, global sensitivity analysis requires more com-

putational work and the approach is often probabilistic.

5.3 Artificial Neural Network Application to Sensitiv-

ity Analysis

The concept of Artificial Neural Network (ANN) stems from an understanding of how

neurons in the brain function to model a simple neural network using electrical circuits

[138].

In intrusion detection and prevention system (IDPS), ANN can predict benign traf-

fic from malicious traffic. Any form of prediction can be improved by learning from

the data. These improvements and techniques depend on four major factors [112]:

• What data is to be improved

• What prior information is available

• What representation is used for the data

• What feedback is available to learn from

5.3.1 Neural Network Training Algorithms

There are many different batch training algorithms that can be used to train a network.

All have different characteristics and performance in terms of speed, precision and

86

 5.3 Artificial Neural Network Application to Sensitivity Analysis

memory requirement. Table 5.1 presents the lists of algorithm and the associated

advantages and disadvantages.

Table 5.1: Comparison of Neural Network training algorithm

Algorithm Advantages Disadvantages

Gradient descent Employs first order algorithm to

find minimum of a function

Newton’s method Require fewer steps than gra-

dient descent to find minimum

value of loss function.

Conjugate gradient Faster convergence than gradient

descent.

Quasi Newton It is faster than gradient descent

and conjugate gradient. Hessian

matrix does not need to be com-

puted and inverted.

Levenberg Marquardt Works without computing exact

Hessian matrix

Performs well with loss func-

tions which take the sum of

squared errors.

Error function is minimised,

while the step size is kept small.

Require many iterations for

functions which have long

narrow valley structures.

slow convergence.

Prone to get stuck in local min-

ima.

Requires more information for

evaluation, storage and inversion

of Hessian Matrix.

Line minimisation can be com-

putationally expensive.

It needs to store and update a

matrix of size M x M.

Requires a lot of memory when

computing Jacobian matrix for

big datasets.

Figure 5.2 illustrates the memory-speed comparison of neural network training al-

gorithm. The gradient descent is the slowest training algorithm requiring less memory,

while Levenberg-Marquardt is the fastest (but it require a lot of computational mem-

ory). For our experiment, we utilise the Levenberg-Marquardt training algorithm. The

Levenberg-Marquardt training algorithm is regarded to be one of the most efficient

training algorithms for ANNs [58]. It works by combining two algorithms (i.e., gra-

dient descent method and the Gauss–Newton method) and as a result, remedies their

individual shortcomings [58][143]. Its major drawbacks are the increased computa-

tional cost due to the need to carry out Hessian matrix inversion calculation each time

87

 5.4 Description of Dataset

Figure 5.2: Memory speed comparison of neural network algorithm

for weight updating and the storage of the Jacobian matrix whose size is decided by

the number of patterns, number of outputs, and the number of weights [143].

For large-sized networks and training patterns, even though the Levenberg–Marquardt

algorithm is very efficient, the computational cost may be too expensive or prohibitive

to handle the Jacobian matrix storage and the Hessian matrix inversion calculation

[143]. For our experiment, there are a few thousands of instances (i.e., 3600 in total),

three input parameters and one output. This can be easily classified as small or medium

sized problem. Hence, the Levenberg-Marquardt training algorithm is adopted in our

experiment due to its speed, stable convergence and less memory consumption (in this

case due to a few parameters).

5.4 Description of Dataset

Over time, emphasis has been on the development of algorithm to solve problems.

With the growing generation of big data due to migration to 5G and beyond, internet

of things (IoT) and cyber-physical processes, it becomes pertinent to develop a means

for the accurate representation of data before developing an algorithm that fits the data

[126][124].

The dataset for this experiment is generated via the modelled tree topology de-

scribed in Chapter three (see Figure 3.13) . Four scenarios namely:1. without at-

88

 5.4 Description of Dataset

tack(data collected when there was no attack), 2. With TCP flooding attack(data col-

lected when TCP attack launched), 3. With UDP flooding attack (data collected when

UDP attack launched) and 4. With HTTP flooding attack (data collected when HTTP

attack launched) scenario were considered. Each experiment was performed for 15

minutes and corresponding network traffic was recorded per second. Hence, there are

900 samples for each scenario to have a total of 3600 data samples. Throughput, jitter

and response time features were extracted using KNIME to create our dataset. Tables

5.2 5.3 5.4 5.5 provides the descriptive statistics for the generated data.

Table 5.2: Descriptive statistics of actual simulation data (over 900 data samples) for

normal scenario

Metric Min Max Average Median Standard Deviation

Tp 95.1000 95.9000 95.6332 95.6000 0.1402

Rt 0.0320 2.1200 0.2114 0.1980 0.1286

Jt 0.0040 0.4930 0.2271 0.1940 0.0943

Table 5.3: Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for TCP attack

scenario

Metric Min Max Average Median Standard Deviation

Tp 0 95.9000 0.5441 0.0238 7.0999

Rt 0.2650 678 302.2676 299 110.6598

Jt 0.0040 0.4930 0.2271 0.1940 0.0943

Table 5.4: Descriptive statistics of Tp, Rt and Jt (over 900 data samples) for UDP

attack scenario

Metric Min Max Average Median Standard Deviation

Tp 95.1000 95.9000 95.6332 95.6000 0.1402

Rt 0.1980 82.1000 26.3097 24.8000 7.3245

Jt 9.1610 18.4280 10.5100 10.1725 1.0496

It can be seen from Tables 5.2 5.3 5.4 5.5 that the average throughput during attack

drops significantly as compared to without attack scenario for TCP and HTTP flooding

89

 5.4 Description of Dataset

Table 5.5: Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for HTTP

attack scenario

Metric Min Max Average Median Standard Deviation

Tp 0 95.9000 0.7429 0 8.3955

Rt 0.0200 1673 49.1262 23.7000 90.9398

Jt 0.0040 0.4930 0.2271 0.1940 0.0943

attack. Similarly, the jitter is affected adversely for the UDP attack and without attack

scenario. In all cases of attack, there is an increase in response time. Thus, it can

be deduced that each of these features are sensitive. However, the goal is to establish

which is the most sensitive .

90

 5.5 Experimental Approach

5.5 Experimental Approach

In this section, local sensitivity analysis is carried out to determine the sensitivity of

throughput, jitter, and response time to DDoS flooding attack. The goal is to determine

if truly these metrics are sensitive to attack and which one is the most sensitive. Figure

5.3 shows the methodology flow chart of the 5 stage approach employed in performing

local sensitivity analysis.

Figure 5.3: LSA methodology flow diagram

• Stage 1: At stage 1, throughput, jitter and response time features are extracted

and the data is normalised using min-max method. the normalised data is used

to obtain cost function values which are then fed as input training data into the

ANN where MSE values are obtained.

91

 5.5 Experimental Approach

• Stage 2 - 4: In these stages, additive white Gaussian noise(AWGN) is added

based on one-at-a-time basis. AWGN is added to throughput(Tp)to have noisy

Tp while other factors (Jitter (Jt) and response time (Rt)) were kept constant

in stage 2. This process is repeated for noisy Jt (Stage 3) and noisy Rt (Stage

4) while other parameters are kept constant and new cost function values are

predicted, respectively in each stage(i.e., Stages 2-4).

• Stage 5: Hypothesis test is carried out at this stage to statistically validate any of

the inferences made from the deviations.

5.5.1 Data Normalisation

The data were normalised such that each system parameter contributes similar relative

numerical weight in order to minimise data redundancy and ensure all target input val-

ues have an agreeable metric scale. The data normalisation process employs min-max

normalisation method. Min-Max normalisation is a strategy which linearly transforms

variable !X! so that the entire range of values of X from minimum to maximum varies

between 0 and 1. It can be expressed mathematically as:

X =
 X − Xmin (5.3)

normalised
Xmax − Xmin

Where Xmin and Xmax are the minimum and maximum values in X respectively. Ta-

bles 5.6 5.7 5.8 5.9 shows the descriptive statistics of the normalised values for tables

presented in section5.4

Table 5.6: Descriptive statistics of normalised Tp, Rt and Jt(over 900 data samples)

for without attack scenario

Metric Min Max Average Median Standard Deviation

Tp 0.9917 1 0.9972 0.9969 0.0015

Rt 7.1728e-06 0.0013 1.1440e-04 1.0640e-04 7.6849e-05

Jt 0 0.0265 0.0121 0.0103 0.0051

92

 5.5 Experimental Approach

Table 5.7: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples)

for TCP attack scenario

Metric Min Max Average Median Standard Deviation

Tp 0 1 0.0057 2.4818e-04 0.0740

Rt 1.4645e-04 0.4053 0.1807 0.1787 0.0661

Jt 0 0.0265 0.0121 0.0103 0.0051

Table 5.8: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples)

for UDP attack scenario

Metric Min Max Average Median Standard Deviation

Tp 0.9917 1 0.9972 0.9969 0.0015

Rt 1.0640e-04 0.0491 0.0157 0.0148 0.0044

Jt 0.4970 1 0.5702 0.5519 0.0570

Table 5.9: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples)

for HTTP attack scenario

Metric Min Max Average Median Standard Deviation

Tp 0 1 0.0077 0 0.0875

Rt 0 1 0.0294 0.0142 0.0544

Jt 0 0.0265 0.0121 0.0103 0.0051

5.5.2 Cost function value evaluation

We use the normalised data in section 5.5.1 to build Input-Output correspondence and

the normalised values are scaled to the following four scenarios:

• Scenario 1: a scale of 1 is assigned to represent without attack

• Scenario 2: a scale of 2 is assigned to represent with TCP attack

• Scenario 3: a scale of 3 is assigned to represent with UDP attack

• Scenario 4: a scale of 4 is assigned to represent with HTTP attack

in order to reflect scenario-specific targets from their corresponding values, a math-

ematical cost function in terms of throughput, jitter and response time is introduced.

The proposed cost function tends toward unity for the worst case scenario (SDN under

93

 5.5 Experimental Approach

severe attack) and approaches zero for the best case scenario (SDN without attack).

The cost function can be represented mathematically by:

CF = (abs(Tp − Jt) ∗ Rt) ∗ Lw (5.4)

where CF represents cost function, Tp = Throughput, Jt = Jitter , Rt = Response

time and Lw = Weight or Scale.

For the best case scenario (i.e.,normal SDN state), the throughput is maximum,

response time is minimum and jitter is minimum. Therefore, Tp approaches 1, Jt and

Rt approach zero after normalisation. So, we have the following condition for the best

case scenario.

Bestcase =

Tp →1

Jt → 0

Rt → 0

(5.5)

Similarly, for the worst case scenario (i.e., SDN under severe attack), the through-

put is minimum, response time is maximum and jitter is maximum. Therefore, Tp

approaches 0, Jt and Rt approach 1 after normalisation. Hence, we have the following

condition for the worst case scenario.

Worstcase =

Tp →0

Jt → 1

Rt → 1

(5.6)

Substituting the values in equations 5.5 and 5.6 into equation 5.4 , CF approaches

null (zero) for normal network state and approaches unity (one) when the SDN is under

attack. A descriptive statistics of the cost function value over 3600 samples for normal,

UDP, TCP, and HTTP flooding attack scenarios is presented in Table5.10.

As shown in Figure 5.4, the cost function value(CF) associated with normal (with-

out attack) network traffic hovers around zero. This value satisfies the condition for

our best case scenario. The other attack scenario has cost function value well above

zero with peak values of 0.78 and 0.63 recorded for HTTP and UDP flood traffic re-

spectively.

94

 5.5 Experimental Approach

Table 5.10: Descriptive Statistics of the Cost function value (over 3600 data samples)

for normal, TCP, UDP and HTTP attack scenarios

Metric Min Max Average Median Standard Deviation

Normal 7.0837e-05 0.0124 0.0011 0.0010 7.5756e-04

TCP 0 0.1528 0.0435 0.0382 0.0251

UDP 0.0014 0.6656 0.2018 0.1968 0.0654

HTTP 0 0.7728 0.0147 0.0065 0.0336

Figure 5.4: Variation in cost function value versus attack

The cost function value(CF) simply indicates that the system parameters experi-

ence changes due to attacks. To ascertain the most sensitive of these parameters due to

attacks, local sensitivity analysis is carried out.

95

 5.5 Experimental Approach

 1

5.5.3 AWGN and MSE

Additive White Gaussian Noise (AWGN) is a statistical noise with a Probability Den-

sity Function equal to that of standard normal distribution. AWGN is characterised

with bell shaped curve as shown in Figure 5.5 with mean value of zero, standard de-

viation value of 1 and total area under the curve is 1. For the local sensitivity analysis,

Figure 5.5: AWGN distribution

AWGN is added to throughput, jitter and response time as shown in stages 2 - 4 of the

LSA methodology flow chart(see figure 5.3). Mean Squared Error(MSE) values over

50 run is obtained afterwards. MSE measures the average squared difference between

the predicted values and the actual value. MSE is expressed mathematically as:

5.5.4 ANN training

n

MSE = (yi
n

i=1

− y ī)2 (5.7)

A prediction model is built using ANN with the normalised value discussed in Section

5.5.1 as input and the cost function values described in Table5.10 as the target values.

96

 5.5 Experimental Approach

The ANN model is trained with the three inputs metrics (i.e., Tp, Rt and Jt), 10 hid-

den layers and a single output (i.e.,CF)under 9 iterations as shown in Figure 5.7. The

best validation performance is at epoch 3 (see Figure 5.6). The number of processing

elements per layer, as well as the number of layers greatly influence the training pro-

cess. Too few processing elements can slow down the learning process and too many

can lead to overfitting of the training dataset [7][6]. For our experiment, 2520 data

samples (70% of the total data samples) have been used as the training data set, 540

data samples (15% of the total data samples) have been used as the validation data set

and 540 data samples (15% of the total data samples) have been used as the test data

set according to the data portioning approach recommended in several works [19][28].

Figure 5.6 shows that the ANN model is correct and acceptably accurate.

Figure 5.6: A typical plot of MSE vs number of Epochs

97

 5.6 Result and Discussions

Figure 5.7: ANN training model

5.6 Result and Discussions

The sensitivity of throughput, jitter and response time is evaluated using deviation of

newly predicted target value from actual target values obtained and the mean squared

error value of the prediction model. Tables 5.11 5.13 5.12 show the impact of adding

AWGN to our impact metrics. For the 50 independent statistical runs to validate the

statistical significance of this experiment, it can be seen that jitters standard devia-

tion value is considerably more than what is obtainable in the Tp noisy and Rt noisy

respectively (See the appendices for the complete tables).

98

 5.6 Result and Discussions

Table 5.11: Local sensitivity analysis for noisy Tp, normalised Rt, normalised Jt (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.2907 0.6820 -0.0230 -0.0632 0.0905

2 -0.1138 0.6911 0.0090 -0.0281 0.0908

3 -0.0876 0.7104 0.0102 -0.0265 0.0915

4 -0.5090 0.6848 -0.0166 -0.0583 0.0900

5 -0.1144 0.6929 -0.0195 -0.0619 0.0895

.

.

.

45 -0.1828 0.7074 0.0107 -0.0279 0.0902

46 -0.1252 0.7173 -0.0016 -0.0435 0.0897

47 -0.1248 0.7038 -0.0100 -0.0521 0.0897

48 -0.1589 0.7035 0.0113 -0.0242 0.0917

49 -0.2439 0.6930 -0.0182 -0.0603 0.0894

50 -0.0753 0.7132 0.0036 -0.0390 0.0893

Table 5.12: Local sensitivity analysis for noisy Rt, normalised Jt, normalised Tp (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.1461 0.6995 -0.0017 -0.0445 0.0898

2 -0.0896 0.6993 -0.0107 -0.0528 0.0895

3 -0.0943 0.7007 -0.0090 -0.0513 0.0893

4 -0.5218 0.6938 -0.0113 -0.0531 0.0899

5 -0.1139 0.6994 -0.0083 -0.0499 0.0893

.

.

.

45 -0.1440 0.6934 -0.0107 -0.0521 0.0893

46 -0.1094 0.6955 -0.0108 -0.0519 0.0893

47 -0.0889 0.6941 -0.0102 -0.0514 0.0892

48 -0.2157 0.6997 -0.0091 -0.0500 0.0895

49 -0.2500 0.7009 -0.0100 -0.0521 0.0895

50 -0.0836 0.6922 -0.0093 -0.0511 0.0894

99

 5.6 Result and Discussions

Table 5.13: Local sensitivity analysis for noisy Jt, normalised Rt, normalised Tp (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.2783 0.6505 -0.0323 -0.0518 0.1307

2 -0.4036 0.7082 -0.0770 -0.0655 0.1249

3 -0.3362 0.6227 -0.0239 -0.0536 0.0962

4 -0.5330 0.7538 0.0612 0.0708 0.1207

5 -0.1335 0.7024 -0.0008 -0.0401 0.0900

.

.

.

45 -0.2275 0.6672 -0.0260 -0.0657 0.0912

46 -0.2108 0.7184 -0.0326 -0.0568 0.0963

47 -0.2364 0.6950 -0.0108 -0.0379 0.0957

48 -0.4165 0.7079 0.0191 -0.0179 0.0912

49 -0.1906 0.7496 0.0007 -0.0350 0.0922

50 -0.0896 0.7296 0.0247 -0.0012 0.0998

5.6.1 Hypothesis test

Wilcoxon test [139] is carried out over 50 runs when Jt, Tp, and Rt are noisy and

when they are not noisy. Since the sample size is sufficiently large (that is, 50 in this

case), a z-statistic can be used to approximate the probability value (p-value) of the test

[52]. This is why Wilcoxon test [139] is an appropriate test for statistical significance

in this case. The Wilcoxon test is a non-parametric test that obeys the central limit

theorem. It tests the null hypothesis that the normalised data and its noisy version are

from continuous distributions with equal medians. A common significance level of

0.05 (i.e., 5%) is selected. If the resultant p-value is equal to or less than 0.05, then,

there is strong evidence against the null hypothesis. The p-value obtained from the

Wilcoxon test is shown in table 5.14. From table 5.14, it can be seen that the null

hypothesis is rejected for all cases. This indicates that noisy Jt, Tp, and Rt are all

statistically sensitive.

• S1: normalised Tp, normalised Rt, normalised Jt

• S2: noisy Tp, normalised Rt, normalised Jt

100

 5.6 Result and Discussions

Table 5.14: Descriptive Statistics of the MSE Values Over 50 Statistical Runs

Metric Min Max Average Median Standard Deviation p-value

S1 0.00797 0.00826 0.0080 0.00803 0.000047 N/A

S2 0.00797 0.01145 0.0084 0.00824 0.000634 2.4225e-09

S3 0.00797 0.00843 0.0081 0.00807 0.000066 1.7330e-17

S4 0.00799 0.02951 0.0115 0.02951 0.004858 1.7330e-17

• S3: noisy Rt, normalised Jt, normalised Tp

• S4: noisy Jt, normalised Rt, normalised Tp

A plot of MSE values against the number of runs is shown in Figure 5.8. Using

ranksum, the result shows that jitter is the most sensitive to flooding attack followed

by throughput and then response time. The work presented in [85] also shows that

delay jitter may severely degrade systems performance. It is worthy of note that all

parameters evaluated are sensitive to DDoS attack. Hence, adequate prevention and

mitigation schemes can be deployed in SDN controller if these features are embedded

in the attack detection scheme.

101

 5.7 Summary

Figure 5.8: Sensitivity analysis of throughput (Tp), jitter (Jt) and response time(Rt)

5.7 Summary

In this chapter, LSA is implemented on real SDN traffic to identify the key metrics

that mainly influence the prediction of whether an SDN is under attack or secure.

The SDN traffic dataset considered are throughput, response time and jitter, and they

are generated from a modelled tree topology in Mininet. The SDN is subjected to a

DDoS flooding attack launched using LOIC. An ANN prediction model is built using

a min-max feature scaling to derive actual target values from the normalised input

parameters. The sensitivity of throughput, jitter and response time is then evaluated

using the deviations of newly predicted target values from actual target values when

an AWGN is added to the respective SDN traffic dataset. Results obtained show that

throughput, jitter and response time are all statistically sensitive to a DDoS flooding

attack on the SDN, and jitter is the most sensitive of all the impact metrics considered.

102

6
Conclusions and Future Work

This chapter presents the conclusion of this thesis and recommends future research

direction in detecting and mitigating DDoS attacks in SDN.

6.1 Conclusion

Networks have become absolutely essential element in the way we do things. It pro-

vides vital communication links that organisations require to run their application and

be competitive. Due to an increase in demand for high data rate and real time appli-

cations, the networking industry is faced with the challenge of constantly redesigning

already complex, vendor-specific equipment with little or no flexibility and interoper-

ability.

SDN is an open technology which promises more innovation, flexible and effective

solutions. Although SDN on the surface provides a simple framework for network

programmability and monitoring, SDN security is such an important aspect of network

and the impact of a security breach cannot be overemphasised. While research into

network security has proceeded at a pace in the scientific and mathematical world, its

applications and practicality simply haven’t kept pace.

In this thesis, design and analysis of anomaly detection and mitigation schemes in

SDN is conducted. The main goal is to establish, if any, the impact of DDoS attack on

SDN, and experimentally assess attack detection techniques using statistical and ma-

chine learning approach. Furthermore, we examine DDoS attack mitigation technique

Chapter

103

 6.1 Conclusion

using reactive flow rule pushed out through the controller and finally, perform sensitiv-

ity analysis on the impact metrics (throughput, jitter and response time) to determine

which parameter is more sensitive to attack.

The simulation results show that DDoS flooding attack on SDN network can de-

grade network performance. At first, network throughput is polled within an interval

to determine the normal distribution of network data without attack and Confidence

Interval (CI) for the normal distribution is obtained. An attack is indicated by a signif-

icant deviation in mean throughput value obtained at subsequent interval compared to

the without attack mean throughput. The calculation of confidence interval and mean

throughput has low overhead and can be easily implemented in the SDN controller to

detect an anomaly. Our evaluation shows that, by leveraging on the throughput infor-

mation from the network server, DDoS attack can be easily detected in real time with

an accuracy of approximately 99% when polled at an interval of 60 seconds. In addi-

tion, we implement machine learning algorithms to detect DDoS attack. The models

were validated using six machine learning algorithm (LR, LDA, KNN, SVM, NB and

CART) on emulated network and real SDN dataset containing HTTP flood, TCP flood

and UDP flood. CART algorithm achieved a high detection accuracy of 98.47% with

only three features namely: throughput, jitter, and response times when compared to

other machine learning algorithm deployed. Hence, CART exhibits strong potential

DDoS flooding attack detection in SDN environments.

Similarly, we demonstrate the effect of UDP and TCP flood DDoS attack on SDN.

This study reveals that existing controller and data plane devices are prone to flood-

ing and spoofing attack which degrades network performance within a short while. It

also indicates that these attacks can be mitigated by pushing blocking flows from the

controller to the attacking switch. Our evaluation shows that additional flow rule in-

sertion to mitigate DDoS flooding attack imposes minimal overhead in terms of CPU

utilisation on the controller and server.

Finally, we perform sensitivity analysis to determine which of the metrics (jitter,

throughput and response time) is more sensitive to distortion by introducing white

Gaussian noise and evaluating the local sensitivity using feedforward artificial neural

network. All metrics are sensitive in detecting DDoS attack. However, jitter appears

to be the most sensitive to attack.

For a DDoS attack with more active agents, the attack can be more severe. Hence,

104

 6.2 Future Work

the need for a robust resilient SDN security architecture. While the evaluation of the

impact of DDoS attack on SDNs remains a very rigorous endeavour, the work carried

out in this thesis offers a primer to the objective evaluation of DDoS attack on SDNs.

6.2 Future Work

The following are the possible extensions of this thesis which include recommenda-

tions for future research directions in SDN security:

• Self healing: Due to global view advantage of SDN controller, the network

downtime can be minimised by timely fault log. The beauty of network self-

healing is that service downtime and other network related issues can be resolved

immediately without network administrators having to get involved. SDN en-

abled self healing network will involve less network administrator, hence, cost

savings for organisations and improved customer satisfaction. Some research on

self-healing network with respect to SDN can be seen in [130] [103] [59].

• Load balancing: Load balancing address resource allocation and guarantees

that available resources are utilised efficiently. During DDoS attack, overloaded

link can be bypassed by finding out less utilised routes and balancing the traffic

across it [11]. Some research on load balancing can be found in [1] [148].

• Integration to cloud: cloud computing technology has made networking re-

sources on demand and it offers services on a pay-as-you-go basis [125]. lever-

aging on SDN enabled cloud services and security will offer elastic services to

customers with high availability and networking resources in the cloud can be

handled effectively by the SDN controller [8]

• Global Sensitivity Analysis: As stated in the final chapter, local sensitivity anal-

ysis was carried out to determine how sensitive each input parameters are to dis-

tortion caused by white Gaussian noise. It would be interesting to see how GSA

will handle multiple input parameters simultaneously and show the relationship

between these parameters.

105

References

[1] A. A. Abdelltif, E. Ahmed, A. T. Fong, A. Gani, and M. Imran, “Sdn-based load

balancing service for cloud servers,” IEEE Communications Magazine, vol. 56,

no. 8, pp. 106–111, 2018.

[2] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined

networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4,

pp. 2317–2346, 2015.

[3] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani, “Se-

curing software defined networks: taxonomy, requirements, and open issues,”

IEEE Communications Magazine, vol. 53, no. 4, pp. 36–44, 2015.

[4] Y. Al-Hammadi, U. Aickelin, and J. Greensmith, “Dca for bot detection,” in

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence). IEEE, 2008, pp. 1807–1816.

[5] M. B. Al-Somaidai and E. B. Yahya, “Survey of software components to emu-

late openflow protocol as an sdn implementation,” American Journal of Software

Engineering and Applications, vol. 3, no. 6, pp. 74–82, 2014.

[6] C. Aldrich, Exploratory analysis of metallurgical process data with neural net-

works and related methods. Elsevier, 2002, vol. 12.

[7] M. K. S. Alsmadi, K. B. Omar, S. A. Noah et al., “Back propagation algorithm:

the best algorithm among the multi-layer perceptron algorithm,” International

106

 REFERENCES

Journal of Computer Science and Network Security, vol. 9, no. 4, pp. 378–383,

2009.

[8] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Meridian:

an sdn platform for cloud network services,” IEEE Communications Magazine,

vol. 51, no. 2, pp. 120–127, 2013.

[9] G. E. Batista, M. C. Monard et al., “A study of k-nearest neighbour as an impu-

tation method.” HIS, vol. 87, no. 251-260, p. 48, 2002.

[10] N. Z. Bawany, J. A. Shamsi, and K. Salah, “Ddos attack detection and mitigation

using sdn: methods, practices, and solutions,” Arabian Journal for Science and

Engineering, vol. 42, no. 2, pp. 425–441, 2017.

[11] M. Belyaev and S. Gaivoronski, “Towards load balancing in sdn-networks dur-

ing ddos-attacks,” in 2014 International Science and Technology Conference

(Modern Networking Technologies)(MoNeTeC). IEEE, 2014, pp. 1–6.

[12] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assessment,” in

Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking. ACM, 2013, pp. 151–152.

[13] H. Berger and A. Jones, “Cyber security & ethical hacking for smes,” in Pro-

ceedings of the The 11th International Knowledge Management in Organiza-

tions Conference on The changing face of Knowledge Management Impacting

Society. ACM, 2016, p. 12.

[14] D. K. Bhattacharyya and J. K. Kalita, DDoS attacks: evolution, detection, pre-

vention, reaction, and tolerance. Chapman and Hall/CRC, 2016.

[15] R. Bifulco and M. Dusi, “Position paper: Reactive logic in software-defined net-

working: Accounting for the limitations of the switches,” 2014 Third European

Workshop on Software Defined Networks, pp. 97–102, 2014.

[16] R. Braga, E. de Souza Mota, and A. Passito, “Lightweight ddos flooding attack

detection using nox/openflow.” in LCN, vol. 10, 2010, pp. 408–415.

[17] L. Breiman, Classification and regression trees. Routledge, 2017.

107

 REFERENCES

[18] S. Brief, “Sdn security considerations in the data center,” 2013.

[19] I. Brown and C. Mues, “An experimental comparison of classification algo-

rithms for imbalanced credit scoring data sets,” Expert Systems with Applica-

tions, vol. 39, no. 3, pp. 3446–3453, 2012.

[20] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe, “Design and implementation of a routing control platform,” in Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2. USENIX Association, 2005, pp. 15–28.

[21] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for atm,

internet and mobile networks (opensig’98),” ACM SIGCOMM Computer Com-

munication Review, vol. 29, no. 1, pp. 97–108, 1999.

[22] L. O. I. Canon, “Praetox Technologies Low Orbit Ion Cannon.” [Online].

Available: https://github.com/NewEraCracker/LOIC/

[23] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: Taking control of the enterprise,” in ACM SIGCOMM Computer Com-

munication Review, vol. 37, no. 4. ACM, 2007, pp. 1–12.

[24] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown,

and S. Shenker, “Sane: A protection architecture for enterprise networks.” in

USENIX Security Symposium, vol. 49, 2006, p. 50.

[25] G.-Y. Chan, C.-S. Lee, and S.-H. Heng, “Discovering fuzzy association rule

patterns and increasing sensitivity analysis of xml-related attacks,” Journal of

Network and Computer Applications, vol. 36, no. 2, pp. 829–842, 2013.

[26] J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection for text classification

with nä ıve bayes,” Expert Systems with Applications, vol. 36, no. 3, pp. 5432–

5435, 2009.

[27] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “Xgboost classifier for

ddos attack detection and analysis in sdn-based cloud,” in 2018 IEEE Interna-

tional Conference on Big Data and Smart Computing (BigComp). IEEE, 2018,

pp. 251–256.

https://github.com/NewEraCracker/LOIC/

108

 REFERENCES

[28] D. Chicco, “Ten quick tips for machine learning in computational biology,” Bio-

Data mining, vol. 10, no. 1, p. 35, 2017.

[29] O. Coker and S. Azodolmolky, Software-defined Networking with OpenFlow:

Deliver Innovative Business Solutions. Packt Publishing Ltd, 2017.

[30] P. Cunningham, “k-nearest neighbour classifiers. mult classif syst,” 2007.

[31] N.-N. Dao, J. Park, M. Park, and S. Cho, “A feasible method to combat against

ddos attack in sdn network,” in 2015 International Conference on Information

Networking (ICOIN). IEEE, 2015, pp. 309–311.

[32] S. Das, G. Parulkar, and N. McKeown, “Rethinking ip core networks,” Journal

of Optical Communications and Networking, vol. 5, no. 12, pp. 1431–1442,

2013.

[33] N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research trends in secu-

rity and ddos in sdn,” Security and Communication Networks, vol. 9, no. 18, pp.

6386–6411, 2016.

[34] N. Dayal and S. Srivastava, “Analyzing behavior of ddos attacks to identify ddos

detection features in sdn,” in 2017 9th International Conference on Communi-

cation Systems and Networks (COMSNETS). IEEE, 2017, pp. 274–281.

[35] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting security

attacks in software-defined networks.” in NDSS, vol. 15, 2015, pp. 8–11.

[36] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.

[37] D. Dittrich, “The dos project’s ‘trinoo’distributed denial of service attack tool,”

1999.

[38] P. Dong, X. Du, H. Zhang, and T. Xu, “A detection method for a novel ddos

attack against sdn controllers by vast new low-traffic flows,” in 2016 IEEE In-

ternational Conference on Communications (ICC). IEEE, 2016, pp. 1–6.

109

 REFERENCES

[39] D. D. Dorfman and E. Alf Jr, “Maximum-likelihood estimation of parameters

of signal-detection theory and determination of confidence intervals—rating-

method data,” Journal of mathematical psychology, vol. 6, no. 3, pp. 487–496,

1969.

[40] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, “General switch manage-

ment protocol (gsmp) v3,” 2002.

[41] A. Doria, J. H. Salim, R. Haas, H. M. Khosravi, W. Wang, L. Dong, R. Gopal,

and J. M. Halpern, “Forwarding and control element separation (forces) protocol

specification.” RFC, vol. 5810, pp. 1–124, 2010.

[42] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms: a

classification,” in Proceedings of the 3rd IEEE International Symposium on Sig-

nal Processing and Information Technology (IEEE Cat. No. 03EX795). IEEE,

2003, pp. 190–193.

[43] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms: clas-

sification and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–666,

2004.

[44] G. Eason, R. Kloti, V. Kotronis, and P. Smith, “Openflow: A security analysis,”

in IEEE ICNP, 2013.

[45] P. Engebretson, The basics of hacking and penetration testing: ethical hacking

and penetration testing made easy. Elsevier, 2013.

[46] R. Enns, “Netconf configuration protocol-rfc 4741,” RFC Editor, 2006.

[47] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual his-

tory of programmable networks,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 2, pp. 87–98, 2014.

[48] M. Fernando, P. Esteves, C. Esteve et al., “Software-defined networking: A

comprehensive survey,” PROCEEDINGS OF THE IEEE, 2015.

[49] Floodlight, “Floodlight controller.” [Online]. Available: http://www.

projectfloodlight.org/

http://www.projectfloodlight.org/
http://www.projectfloodlight.org/
http://www.projectfloodlight.org/

110

 REFERENCES

[50] D. Gavrilis and E. Dermatas, “Real-time detection of distributed denial-of-

service attacks using rbf networks and statistical features,” Computer Networks,

vol. 48, no. 2, pp. 235–245, 2005.

[51] A. Ghasemi and S. Zahediasl, “Normality tests for statistical analysis: a guide

for non-statisticians,” International journal of endocrinology and metabolism,

vol. 10, no. 2, p. 486, 2012.

[52] J. Gibbons and S. Chakraborti, “Nonparametric statistical inference, 4th edn.

m,” 2003.

[53] GinjaChris, “GinjaChris.” [Online]. Available: https://github.com/GinjaChris/

pentmenu

[54] P. Goransson, C. Black, and T. Culver, Software defined networks: a compre-

hensive approach. Morgan Kaufmann, 2016.

[55] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to network control

and management,” ACM SIGCOMM Computer Communication Review, vol. 35,

no. 5, pp. 41–54, 2005.

[56] B. Gupta, R. C. Joshi, and M. Misra, “Defending against distributed denial of

service attacks: issues and challenges,” Information Security Journal: A Global

Perspective, vol. 18, no. 5, pp. 224–247, 2009.

[57] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A slice

abstraction for software-defined networks,” in Proceedings of the first workshop

on Hot topics in software defined networks. ACM, 2012, pp. 79–84.

[58] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the mar-

quardt algorithm,” IEEE transactions on Neural Networks, vol. 5, no. 6, pp.

989–993, 1994.

[59] K. Hasan, S. Shetty, A. Hassanzadeh, M. B. Salem et al., “Self-healing cyber

resilient framework for software defined networking-enabled energy delivery

system,” in 2018 IEEE Conference on Control Technology and Applications

(CCTA). IEEE, 2018, pp. 1692–1697.

https://github.com/GinjaChris/pentmenu
https://github.com/GinjaChris/pentmenu
https://github.com/GinjaChris/pentmenu

111

 REFERENCES

[60] S. Hashem, “Sensitivity analysis for feedforward artificial neural networks with

differentiable activation functions,” in [Proceedings 1992] IJCNN International

Joint Conference on Neural Networks, vol. 1. IEEE, 1992, pp. 419–424.

[61] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Expressing and

enforcing flow-based network security policies,” University of Chicago, Tech.

Rep, vol. 9, 2008.

[62] A. Hunter, L. Kennedy, J. Henry, and I. Ferguson, “Application of neural net-

works and sensitivity analysis to improved prediction of trauma survival,” Com-

puter methods and programs in biomedicine, vol. 62, no. 1, pp. 11–19, 2000.

[63] R. L. Iman and W. Conover, “Small sample sensitivity analysis techniques for

computer models. with an application to risk assessment,” Communications in

statistics-theory and methods, vol. 9, no. 17, pp. 1749–1842, 1980.

[64] R. L. Iman and J. C. Helton, “An investigation of uncertainty and sensitivity

analysis techniques for computer models,” Risk analysis, vol. 8, no. 1, pp. 71–

90, 1988.

[65] T. S. S. International Telecommunication Union, “Security architecture for sys-

tems providing end-to-end communications,” ITU-T Rec. X. 805.

[66] B. Iooss and P. Lemaˆıtre, “A review on global sensitivity analysis methods,”

in Uncertainty management in simulation-optimization of complex systems.

Springer, 2015, pp. 101–122.

[67] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation:

transparent moving target defense using software defined networking,” in Pro-

ceedings of the first workshop on Hot topics in software defined networks.

ACM, 2012, pp. 127–132.

[68] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed

software defined wan,” in ACM SIGCOMM Computer Communication Review,

vol. 43, no. 4. ACM, 2013, pp. 3–14.

112

 REFERENCES

[69] R. H. Jhaveri, N. M. Patel, Y. Zhong, and A. K. Sangaiah, “Sensitivity analysis

of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc

networks in industrial iot,” IEEE Access, vol. 6, pp. 20 085–20 103, 2018.

[70] R. d. S. M. Júnior, A. P. Guimaraes, K. M. Camboim, P. R. Maciel, and K. S.

Trivedi, “Sensitivity analysis of availability of redundancy in computer net-

works,” CTRQ 2011, p. 122, 2011.

[71] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, “Jess: Joint entropy-based ddos

defense scheme in sdn,” IEEE Journal on Selected Areas in Communications,

vol. 36, no. 10, pp. 2358–2372, 2018.

[72] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:

Verifying network-wide invariants in real time,” in Presented as part of the

10th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 13), 2013, pp. 15–27.

[73] J. Kirch, C. Thomaseth, A. Jensch, and N. E. Radde, “The effect of model rescal-

ing and normalization on sensitivity analysis on an example of a mapk pathway

model,” EPJ Nonlinear Biomedical Physics, vol. 4, no. 1, p. 3, 2016.

[74] R. Kokila, S. T. Selvi, and K. Govindarajan, “Ddos detection and analysis in

sdn-based environment using support vector machine classifier,” in 2014 Sixth

International Conference on Advanced Computing (ICoAC). IEEE, 2014, pp.

205–210.

[75] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and

other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[76] P. A. Kowalski and M. Kusy, “Sensitivity analysis for probabilistic neural net-

work structure reduction,” IEEE transactions on neural networks and learning

systems, vol. 29, no. 5, pp. 1919–1932, 2017.

[77] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable

software-defined networks,” in Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking. ACM, 2013, pp. 55–

60.

113

 REFERENCES

[78] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-defined networking: A comprehensive survey,” arXiv

preprint arXiv:1406.0440, 2014.

[79] M. Kuerban, Y. Tian, Q. Yang, Y. Jia, B. Huebert, and D. Poss, “Flowsec: Dos

attack mitigation strategy on sdn controller,” in 2016 IEEE International Con-

ference on Networking, Architecture and Storage (NAS). IEEE, 2016, pp. 1–2.

[80] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “Ddos attack detection method

using cluster analysis,” Expert systems with applications, vol. 34, no. 3, pp.

1659–1665, 2008.

[81] R. J. Lewis, “An introduction to classification and regression tree (cart) analy-

sis,” in Annual meeting of the society for academic emergency medicine in San

Francisco, California, vol. 14, 2000.

[82] C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, and L. Gong, “Detection and

defense of ddos attack–based on deep learning in openflow-based sdn,” Interna-

tional Journal of Communication Systems, vol. 31, no. 5, p. e3497, 2018.

[83] S. Lim, S. Yang, Y. Kim, S. Yang, and H. Kim, “Controller scheduling for

continued sdn operation under ddos attacks,” Electronics Letters, vol. 51, no. 16,

pp. 1259–1261, 2015.

[84] K. G. Link, M. T. Stobb, J. Di Paola, K. B. Neeves, A. L. Fogelson, S. S. Sindi,

and K. Leiderman, “A local and global sensitivity analysis of a mathematical

model of coagulation and platelet deposition under flow,” PloS one, vol. 13,

no. 7, p. e0200917, 2018.

[85] M. Long, C.-H. Wu, and J. Y. Hung, “Denial of service attacks on network-

based control systems: impact and mitigation,” IEEE Transactions on Industrial

Informatics, vol. 1, no. 2, pp. 85–96, 2005.

[86] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln labora-

tory evaluation data for network anomaly detection,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2003, pp. 220–237.

114

 REFERENCES

[87] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and

1999 darpa intrusion detection system evaluations as performed by lincoln lab-

oratory,” ACM Transactions on Information and System Security (TISSEC),

vol. 3, no. 4, pp. 262–294, 2000.

[88] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus net-

works,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.

69–74, 2008.

[89] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly detec-

tion using software defined networking,” in International workshop on recent

advances in intrusion detection. Springer, 2011, pp. 161–180.

[90] Mininet, “Download/Get Started with Mininet.” [Online]. Available: http:

//mininet.org/download/

[91] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mecha-

nisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp.

39–53, 2004.

[92] J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable packets,” in Pro-

ceedings IEEE INFOCOM 2001. Conference on Computer Communications.

Twentieth Annual Joint Conference of the IEEE Computer and Communications

Society (Cat. No. 01CH37213), vol. 1. IEEE, 2001, pp. 41–50.

[93] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks against sdn

controllers,” in 2015 International Conference on Computing, Networking and

Communications (ICNC). IEEE, 2015, pp. 77–81.

[94] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems:

Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99

data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1-3,

pp. 18–31, 2016.

http://mininet.org/download/
http://mininet.org/download/

115

 REFERENCES

[95] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, “Enabling secure mo-

bility with openflow,” in 2013 IEEE SDN for Future Networks and Services

(SDN4FNS). IEEE, 2013, pp. 1–5.

[96] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich, “Dele-

gating network security with more information,” in Proceedings of the 1st ACM

workshop on Research on enterprise networking. ACM, 2009, pp. 19–26.

[97] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: dynamic ac-

cess control for enterprise networks,” in Proceedings of the 1st ACM workshop

on Research on enterprise networking. ACM, 2009, pp. 11–18.

[98] A. Networks, “Network Security Infrastructure Report.” [Online]. Available:

https://www.arbornetworks.com/report/

[99] E. Ng, Z. Cai, and A. Cox, “Maestro: A system for scalable openflow control,”

Rice University, Houston, TX, USA, TSEN Maestro-Techn. Rep, TR10-08, 2010.

[100] W. W. Ng, R. K. Chang, and D. S. Yeung, “Dimensionality reduction for denial

of service detection problems using rbfnn output sensitivity,” in Proceedings of

the 2003 International Conference on Machine Learning and Cybernetics (IEEE

Cat. No. 03EX693), vol. 2. IEEE, 2003, pp. 1293–1298.

[101] Nmap, “Zenmap.” [Online]. Available: https://nmap.org/zenmap/

[102] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

“A survey of software-defined networking: Past, present, and future of pro-

grammable networks,” IEEE Communications Surveys & Tutorials, vol. 16,

no. 3, pp. 1617–1634, 2014.

[103] L. Ochoa-Aday, C. Cervelló-Pastor, and A. Fernández-Fernández, “Self-healing

and sdn: Bridging the gap,” Digital Communications and Networks, 2019.

[104] Open Networking Foundation, “OpenFlow Switch Specification

(Version 1.5.1),” vol. 1, pp. 1–36, 2015. [Online]. Avail-

able: http://www.opennetworking.orghttps://www.opennetworking.

org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-switch-v1.5.1.pdf

https://www.arbornetworks.com/report/
https://nmap.org/zenmap/

116

 REFERENCES

[105] M. Panda and M. R. Patra, “Network intrusion detection using naive bayes,”

International journal of computer science and network security, vol. 7, no. 12,

pp. 258–263, 2007.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine

learning in python,” Journal of machine learning research, vol. 12, no. Oct, pp.

2825–2830, 2011.

[107] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain sdn

controllers,” in 2014 IEEE Network Operations and Management Symposium

(NOMS). IEEE, 2014, pp. 1–4.

[108] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A security

enforcement kernel for openflow networks,” in Proceedings of the first workshop

on Hot topics in software defined networks. ACM, 2012, pp. 121–126.

[109] T. L. F. PROJECTS, “THE LINUX FOUNDATION PROJECTS.” [Online].

Available: https://www.opendaylight.org/

[110] B. Rashidi, C. Fung, and E. Bertino, “A collaborative ddos defence frame-

work using network function virtualization,” IEEE Transactions on Information

Forensics and Security, vol. 12, no. 10, pp. 2483–2497, 2017.

[111] E. Rogers, “Diffusion of innovations, edition of the free press,” The fourth,

1995.

[112] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[113] A. Saltelli, “Sensitivity analysis for importance assessment,” Risk analysis,

vol. 22, no. 3, pp. 579–590, 2002.

[114] A. Saltelli and P. Annoni, “How to avoid a perfunctory sensitivity analysis,”

Environmental Modelling & Software, vol. 25, no. 12, pp. 1508–1517, 2010.

https://www.opendaylight.org/

117

 REFERENCES

[115] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,

M. Saisana, and S. Tarantola, Global sensitivity analysis: the primer. John

Wiley & Sons, 2008.

[116] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, “Sensitivity analysis in

practice: a guide to assessing scientific models,” Chichester, England, 2004.

[117] A. Sangodoyin, B. Modu, I. Awan, and J. P. Disso, “An approach to detecting

distributed denial of service attacks in software defined networks,” in 2018 IEEE

6th International Conference on Future Internet of Things and Cloud (FiCloud).

IEEE, 2018, pp. 436–443.

[118] A. Sangodoyin, T. Sigwele, and P. Pillai, “Dos attack impact assessment on

software defined networks,” Wireless and Satellite Systems, p. 11.

[119] M. Santos, B. de Oliveira, C. Margi, B. N. Astuto, T. Turletti, and K. Obraczka,

“Software-defined networking based capacity sharing in hybrid networks,”

2013.

[120] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation

challenges for software-defined networks,” IEEE Communications Magazine,

vol. 51, no. 7, pp. 36–43, 2013.

[121] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson, “Fresco:

Modular composable security services for software-defined networks,” in 20th

Annual Network & Distributed System Security Symposium. Ndss, 2013.

[122] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and

vigilant switch flow management in software-defined networks,” in Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security,

2013, pp. 413–424.

[123] K. Slavov, D. Migault, and M. Pourzandi, “Identifying and addressing the vul-

nerabilities and security issues of sdn,” Ericsson Technology Review, vol. 92,

no. 7, 2015.

118

 REFERENCES

[124] R. Sommer and V. Paxson, “Outside the closed world: On using machine learn-

ing for network intrusion detection,” in 2010 IEEE symposium on security and

privacy. IEEE, 2010, pp. 305–316.

[125] J. Son and R. Buyya, “A taxonomy of software-defined networking (sdn)-

enabled cloud computing,” ACM Computing Surveys (CSUR), vol. 51, no. 3,

p. 59, 2018.

[126] S. Suthaharan, “Big data classification: Problems and challenges in network

intrusion prediction with machine learning,” ACM SIGMETRICS Performance

Evaluation Review, vol. 41, no. 4, pp. 70–73, 2014.

[127] O. switch specification, “Download/Get Started with Mininet.” [On-

line]. Available: https://www.opennetworking.org/wp-content/uploads/2014/

10/openflow-switch-v1.5.0.pdf

[128] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep

recurrent neural network for intrusion detection in sdn-based networks,” in

2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft).

IEEE, 2018, pp. 202–206.

[129] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.

Minden, “A survey of active network research,” IEEE communications Maga-

zine, vol. 35, no. 1, pp. 80–86, 1997.

[130] P. Thorat, S. M. Raza, D. T. Nguyen, G. Im, H. Choo, and D. S. Kim, “Opti-

mized self-healing framework for software defined networks,” in Proceedings of

the 9th International Conference on Ubiquitous Information Management and

Communication. ACM, 2015, p. 7.

[131] S. Vishwanathan and M. N. Murty, “Ssvm: a simple svm algorithm,” in Proceed-

ings of the 2002 International Joint Conference on Neural Networks. IJCNN’02

(Cat. No. 02CH37290), vol. 3. IEEE, 2002, pp. 2393–2398.

[132] VMware, “Network Virtualization and Security Software.” [Online]. Available:

https://www.vmware.com/products/nsx.html

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.vmware.com/products/nsx.html

119

 REFERENCES

[133] A. Voellmy and J. Wang, “Scalable software defined network controllers,” ACM

SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 289–290,

2012.

[134] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection in the

era of cloud computing and software-defined networking,” Computer Networks,

vol. 81, pp. 308–319, 2015.

[135] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed ddos detection

mechanism in software-defined networking,” in 2015 IEEE Trustcom/Big-

DataSE/ISPA, vol. 1. IEEE, 2015, pp. 310–317.

[136] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure controller

platform for openflow applications,” in Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking. ACM, 2013,

pp. 171–172.

[137] D. Wetherall, “Active network vision and reality: lessons from a capsule-based

system,” in Proceedings DARPA Active Networks Conference and Exposition.

IEEE, 2002, pp. 25–40.

[138] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron,

madaline, and backpropagation,” Proceedings of the IEEE, vol. 78, no. 9, pp.

1415–1442, 1990.

[139] F. Wilcoxon, “Individual comparisons by ranking methods. biom bull 1: 80–83,”

1945.

[140] P. Xiao, W. Qu, H. Qi, and Z. Li, “Detecting ddos attacks against data cen-

ter with correlation analysis,” Computer Communications, vol. 67, pp. 66–74,

2015.

[141] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with open-

flow/nox architecture,” in 2011 19Th IEEE international conference on network

protocols. IEEE, 2011, pp. 7–12.

[142] J. Ye, R. Janardan, and Q. Li, “Two-dimensional linear discriminant analysis,”

in Advances in neural information processing systems, 2005, pp. 1569–1576.

120

 REFERENCES

[143] H. Yu and B. M. Wilamowski, “Levenberg-marquardt training,” Industrial elec-

tronics handbook, vol. 5, no. 12, pp. 1–16, 2011.

[144] S. Yu, Y. Tian, S. Guo, and D. O. Wu, “Can we beat ddos attacks in clouds?”

IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 9, pp.

2245–2254, 2013.

[145] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and C. YanRen, “A novel

design for future on-demand service and security,” in 2010 IEEE 12th Interna-

tional Conference on Communication Technology. IEEE, 2010, pp. 385–388.

[146] S. Zerkane, D. Espes, P. Le Parc, and F. Cuppens, “Vulnerability analysis of

software defined networking,” in International Symposium on Foundations and

Practice of Security. Springer, 2016, pp. 97–116.

[147] X. Zhou and H. Lin, Local Sensitivity Analysis. Cham: Springer

International Publishing, 2017, pp. 1130–1131. [Online]. Available: https:

//doi.org/10.1007/978-3-319-17885-1 703

[148] Y. Zhou, K. Zheng, W. Ni, and R. P. Liu, “Elastic switch migration for control

plane load balancing in sdn,” IEEE Access, vol. 6, pp. 3909–3919, 2018.

[149] J. M. Zurada, A. Malinowski, and I. Cloete, “Sensitivity analysis for minimiza-

tion of input data dimension for feedforward neural network,” in Proceedings

of IEEE International Symposium on Circuits and Systems-ISCAS’94, vol. 6.

IEEE, 1994, pp. 447–450.

[150] J. M. Zurada, A. Malinowski, and S. Usui, “Perturbation method for deleting

redundant inputs of perceptron networks,” Neurocomputing, vol. 14, no. 2, pp.

177–193, 1997.

https://doi.org/10.1007/978-3-319-17885-1_703
https://doi.org/10.1007/978-3-319-17885-1_703

121

A
Results of Local sensitivity analysis of Tp

noisy, Jt noisy and Rt noisy for 50 runs

Appendix

Table A.1: Local sensitivity analysis for Tp noisy, normalised Rt, normalised Jt (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.2907 0.6820 -0.0230 -0.0632 0.0905

122

2 -0.1138 0.6911 0.0090 -0.0281 0.0908

3 -0.0876 0.7104 0.0102 -0.0265 0.0915

4 -0.5090 0.6848 -0.0166 -0.0583 0.0900

5 -0.1144 0.6929 -0.0195 -0.0619 0.0895

6 -0.1281 0.7314 -0.0024 -0.0315 0.0942

7 -0.1177 0.6969 -0.0114 -0.0529 0.0895

8 -0.1248 0.6730 -0.0141 -0.0516 0.0910

9 -0.1677 0.7188 -0.0065 -0.0457 0.0909

10 -0.2079 0.6964 -0.0054 -0.0469 0.0893

11 -0.1413 0.7068 -0.0036 -0.0449 0.0895

12 -0.1582 0.6808 -0.0221 -0.0578 0.0908

13 -0.0767 0.7080 0.0012 -0.0400 0.0897

14 -0.0764 0.7064 -0.0014 -0.0427 0.0893

15 -0.1062 0.7064 0.0001 -0.0420 0.0901

16 -0.2337 0.6871 -0.0126 -0.0543 0.0896

17 -0.1832 0.6967 -0.0237 -0.0620 0.0923

18 -0.1964 0.6935 -0.0072 -0.0483 0.0894

19 -0.2736 0.7796 0.0292 -0.0042 0.0950

20 -0.1658 0.6703 0.0019 -0.0355 0.0913

21 -0.1491 0.7115 -0.0012 -0.0438 0.0896

22 -0.1402 0.6364 -0.0170 -0.0478 0.0935

23 -0.1023 0.7022 0.0012 -0.0391 0.0901

24 -0.1567 0.7126 -0.0123 -0.0535 0.0894

25 -0.1739 0.6962 -0.0088 -0.0496 0.0893

26 -0.1628 0.6986 -0.0062 -0.0478 0.0892

27 -0.0838 0.7068 0.0095 -0.0278 0.0907

28 -0.0949 0.7559 0.0092 -0.0290 0.0903

29 -0.1309 0.7172 -0.0091 -0.0451 0.0916

30 -0.1619 0.7354 -0.0079 -0.0392 0.0942

31 -0.3041 0.7020 0.0162 -0.0231 0.1006

32 -0.0808 0.6946 -0.0086 -0.0499 0.0895

33 -0.0943 0.7100 0.0005 -0.0411 0.0898

34 -0.5080 0.6945 -0.0121 -0.0549 0.0903

35 -0.2063 0.6948 -0.0107 -0.0527 0.0895

36 -0.1662 0.7003 -0.0161 -0.0581 0.0900

37 -0.9084 0.7033 -0.0169 -0.0585 0.0912

38 -0.1037 0.7497 0.0053 -0.0349 0.0903

39 -0.2242 0.7425 -0.0207 -0.0351 0.1050

40 -0.1298 0.7061 -0.0028 -0.0450 0.0896

41 -0.1020 0.7055 -0.0071 -0.0482 0.0902

42 -0.1680 0.6896 0.0004 -0.0371 0.0903

43 -0.1595 0.6956 -0.0042 -0.0474 0.0894

44 -0.1175 0.6898 -0.0100 -0.0505 0.0908

45 -0.1828 0.7074 0.0107 -0.0279 0.0902

46 -0.1252 0.7173 -0.0016 -0.0435 0.0897

47 -0.1248 0.7038 -0.0100 -0.0521 0.0897

48 -0.1589 0.7035 0.0113 -0.0242 0.0917

49 -0.2439 0.6930 -0.0182 -0.0603 0.0894

50 -0.0753 0.7132 0.0036 -0.0390 0.0893

123

Table A.2: Local sensitivity analysis for Rt noisy, normalised Jt, normalised Tp (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.1461 0.6995 -0.0017 -0.0445 0.0898

2 -0.0896 0.6993 -0.0107 -0.0528 0.0895

3 -0.0943 0.7007 -0.0090 -0.0513 0.0893

4 -0.5218 0.6938 -0.0113 -0.0531 0.0899

5 -0.1139 0.6994 -0.0083 -0.0499 0.0893

6 -0.0945 0.6979 -0.0071 -0.0487 0.0892

7 -0.0981 0.6940 -0.0096 -0.0507 0.0892

8 -0.1146 0.6971 -0.0098 -0.0506 0.0892

9 -0.1631 0.6996 -0.0095 -0.0512 0.0893

10 -0.1984 0.7058 -0.0057 -0.0466 0.0894

11 -0.1032 0.6975 -0.0080 -0.0494 0.0894

12 -0.1517 0.7066 -0.0099 -0.0519 0.0895

13 -0.0881 0.6998 -0.0084 -0.0498 0.0893

14 -0.0793 0.6946 -0.0093 -0.0503 0.0893

15 -0.1021 0.6980 -0.0090 -0.0505 0.0894

16 -0.2043 0.7023 -0.0098 -0.0506 0.0893

17 -0.1486 0.7044 -0.0007 -0.0415 0.0898

18 -0.1946 0.6948 -0.0096 -0.0503 0.0893

19 -0.1317 0.6960 -0.0104 -0.0519 0.0895

20 -0.1294 0.6967 -0.0050 -0.0461 0.0893

21 -0.1607 0.7009 -0.0087 -0.0499 0.0893

22 -0.0946 0.6924 -0.0101 -0.0515 0.0892

23 -0.1305 0.7038 -0.0056 -0.0483 0.0897

24 -0.1373 0.7020 -0.0080 -0.0496 0.0894

25 -0.1825 0.6964 -0.0092 -0.0506 0.0896

26 -0.1729 0.6990 -0.0078 -0.0491 0.0893

27 -0.0916 0.7021 -0.0081 -0.0496 0.0893

28 -0.1033 0.7043 -0.0096 -0.0514 0.0895

29 -0.1202 0.7047 -0.0118 -0.0539 0.0897

30 -0.1071 0.7102 -0.0088 -0.0505 0.0895

31 -0.2968 0.6928 -0.0096 -0.0504 0.0895

32 -0.0793 0.6947 -0.0088 -0.0496 0.0893

33 -0.0814 0.6985 -0.0099 -0.0512 0.0892

34 -0.5114 0.6970 -0.0102 -0.0509 0.0896

35 -0.1939 0.6960 -0.0112 -0.0525 0.0894

36 -0.1635 0.7019 -0.0101 -0.0509 0.0896

37 -0.7064 0.6965 -0.0091 -0.0505 0.0900

38 -0.1086 0.7015 -0.0082 -0.0487 0.0897

39 -0.1278 0.7052 -0.0159 -0.0573 0.0905

40 -0.1604 0.6974 -0.0096 -0.0506 0.0893

41 -0.1781 0.7041 -0.0084 -0.0500 0.0895

42 -0.0909 0.6905 -0.0082 -0.0499 0.0892

43 -0.1863 0.6982 -0.0038 -0.0456 0.0898

44 -0.0860 0.7011 -0.0084 -0.0501 0.0897

45 -0.1440 0.6934 -0.0107 -0.0521 0.0893

46 -0.1094 0.6955 -0.0108 -0.0519 0.0893

47 -0.0889 0.6941 -0.0102 -0.0514 0.0892

48 -0.2157 0.6997 -0.0091 -0.0500 0.0895

49 -0.2500 0.7009 -0.0100 -0.0521 0.0895

50 -0.0836 0.6922 -0.0093 -0.0511 0.0894

124

Table A.3: Local sensitivity analysis for Jt noisy, normalised Rt, normalised Tp (over

3600 data samples) for 50 statistical runs

No of runs Min Max Average Median Standard Deviation

1 -0.2783 0.6505 -0.0323 -0.0518 0.1307

2 -0.4036 0.7082 -0.0770 -0.0655 0.1249

3 -0.3362 0.6227 -0.0239 -0.0536 0.0962

4 -0.5330 0.7538 0.0612 0.0708 0.1207

5 -0.1335 0.7024 -0.0008 -0.0401 0.0900

6 -0.3098 0.6035 -0.0655 -0.0718 0.1099

7 -0.1327 0.6900 -0.0092 -0.0515 0.0896

8 -0.1724 0.6709 -0.0271 -0.0663 0.0911

9 -0.5250 0.6866 -0.1055 -0.0780 0.1356

10 -0.2824 0.6954 -0.0008 -0.0413 0.0900

11 -0.1689 0.6948 -0.0204 -0.0610 0.0905

12 -0.3031 0.7189 -0.0511 -0.0571 0.1076

13 -0.1432 0.6935 -0.0101 -0.0510 0.0907

14 -0.1075 0.6804 -0.0133 -0.0568 0.0895

15 -0.1131 0.7846 0.0043 -0.0342 0.1009

16 -0.2020 0.6969 0.0063 -0.0280 0.0923

17 -0.2129 0.6884 -0.0096 -0.0487 0.0912

18 -0.1135 0.7454 0.0056 -0.0320 0.0914

19 -0.3325 0.6425 -0.0747 -0.0896 0.1086

20 -0.1571 0.7642 0.0068 -0.0265 0.0958

21 -0.2269 0.6976 -0.0288 -0.0698 0.0922

22 -0.1246 0.7236 -0.0044 -0.0384 0.0926

23 -0.2143 0.6970 0.0207 -0.0112 0.0941

24 -0.1207 0.7043 -0.0066 -0.0431 0.0911

25 -0.1758 0.6967 -0.0123 -0.0432 0.0921

26 -0.1305 0.6945 0.0141 -0.0185 0.0917

27 -0.0850 0.7126 0.0452 0.0298 0.1082

28 -0.1426 0.6511 -0.0113 -0.0409 0.0927

29 -0.1435 0.6817 -0.0368 -0.0753 0.0904

30 -0.2022 0.7572 0.0150 -0.0066 0.1103

31 -0.1580 0.6980 -0.0162 -0.0568 0.0909

32 -0.2035 0.6875 -0.0215 -0.0599 0.0932

33 -0.0918 0.6951 -0.0092 -0.0505 0.0900

34 -0.6251 0.6365 -0.0271 -0.0646 0.0927

35 -0.1935 0.6802 -0.0224 -0.0655 0.0898

36 -0.3200 0.6875 -0.0080 -0.0365 0.0929

37 -0.8707 0.6955 -0.0220 -0.0444 0.1005

38 -0.1098 0.8213 0.0793 0.0825 0.1302

39 -0.2530 0.7218 0.0422 0.0240 0.1416

40 -0.4004 0.6906 -0.0036 -0.0431 0.0915

41 -0.1805 0.7446 0.0564 0.0499 0.1138

42 -0.2959 0.7020 -0.0802 -0.0986 0.1025

43 -0.1863 0.6472 -0.0226 -0.0638 0.0918

44 -0.0888 0.6865 0.0600 0.0537 0.1093

45 -0.2275 0.6672 -0.0260 -0.0657 0.0912

46 -0.2108 0.7184 -0.0326 -0.0568 0.0963

47 -0.2364 0.6950 -0.0108 -0.0379 0.0957

48 -0.4165 0.7079 0.0191 -0.0179 0.0912

49 -0.1906 0.7496 0.0007 -0.0350 0.0922

50 -0.0896 0.7296 0.0247 -0.0012 0.0998

125

B
LSA code in Mfile format

clear

clc

for test_run=1:50

close all force

simulation_data=xlsread(’simulation_data.xlsx’);

% Throughput mathematical/statistical evaluation and normaliz

Tp_data=simulation_data(:,1);

Tp_data_norm=norm_func(Tp_data);

% Jitter mathematical/statistical evaluation and normalization

Jt_data=simulation_data(:,2);

Jt_data_norm=norm_func(Jt_data);

% Response mathematical/statistical evaluation and normaliza

Rt_data=simulation_data(:,3);

Rt_data_norm=norm_func(Rt_data);

input=[Tp_data_norm,Jt_data_norm,Rt_data_norm];

input=input’;

%Building the NN

trainFcn = ’trainlm’;

hiddenLayerSize = 10;

net = feedforwardnet(hiddenLayerSize,trainFcn); % ANN Model

% net.input.processFcns = {’removeconstantrows’,’mapminmax’}

Appendix

126

% net.output.processFcns = {’removeconstantrows’,’mapminmax’};

index=randperm(3600); % Over fitting

TrainData=[];

for i=1:2520

TrainData(:,i)=input(:,index(i));

end

ValidData=[];%15% for validation

for i=1:540

ValidData(:,i)=input(:,index(i+2520));

end

TestData=[];

for i=1:540 %15% for test

TestData(:,i)=input(:,index(3060+i));

end

new_data_input=[TrainData,ValidData,TestData];

% Calculate Targets (Based on proposed Mathematical Cost Fu

Lw_data=simulation_data(:,4); % Rescaling to distinguish simu

Lw_data=Lw_data*10;

norm_simulation_data=[Tp_data_norm,Jt_data_norm,Rt_data_nor

CF=zeros;

CF_new=zeros;

for i=1:size(norm_simulation_data,1)

sample_data=norm_simulation_data(i,:);

Tp=sample_data(1);

Jt=sample_data(2);

Rt=sample_data(3);

Lw=sample_data(4);

CF(i,:)=(abs(Tp-Jt)*Rt)*Lw;

end

targets=CF’;

x=new_data_input;

t=targets;

net.divideFcn = ’divideind’;

127

net.divideParam.trainInd = 1:2520;

net.divideParam.valInd = 2521:3060;

net.divideParam.testInd = 3061:3600;

net.performFcn = ’mse’;

[net,tr] = train(net,x,t); % training ANN

y = net(x);

Normal_e = gsubtract(t,y); % deviations from the actual targets

Normal_performance = mse(net,t,y) % this is the MSE error value

% view(net)

avg_Normal_y=mean(y);

med_Normal_y=median(y);

min_Normal_y=min(y);

max_Normal_y=max(y);

std_Normal_y=std(y);

avg_Normal_e=mean(Normal_e);

med_Normal_e=median(Normal_e);

min_Normal_e=min(Normal_e);

max_Normal_e=max(Normal_e);

std_Normal_e=std(Normal_e);

store_Normal_performance(test_run,:)=Normal_performance;

Normal_y_avg_result(test_run,:)=avg_Normal_y;

Normal_y_med_result(test_run,:)=med_Normal_y;

Normal_y_min_result(test_run,:)=min_Normal_y;

Normal_y_max_result(test_run,:)=max_Normal_y;

Normal_y_std_result(test_run,:)=std_Normal_y;

Normal_e_avg_result(test_run,:)=avg_Normal_e;

Normal_e_med_result(test_run,:)=med_Normal_e;

Normal_e_min_result(test_run,:)=min_Normal_e;

Normal_e_max_result(test_run,:)=max_Normal_e;

Normal_e_std_result(test_run,:)=std_Normal_e;

% Visualize cost function trend

plot(1:900,CF(1:900),’g-’,’LineWidth’,2)

hold on

128

plot(901:1800,CF(901:1800),’b-’,’LineWidth’,2)

hold on

plot(1801:2700,CF(1801:2700),’y-’,’LineWidth’,2)

hold on

plot(2701:3600,CF(2701:3600),’r-’,’LineWidth’,2)

hold off

grid on

set(gca,’FontSize’,15,’FontWeight’,’bold’);

xlabel (’Number of Simulated Scenarios’,’FontSize’, 15, ’FontWe

ylabel (’Cost Function Value’,’FontSize’, 15,’FontWeight’,’bold

legend1 = legend(’Normal Operating Condition’,’TCP Flood Attack

set(legend1,’FontSize’,10);

%% Local Sensitivity Analysis

%% Noisy Tp

% Throughput mathematical/statistical evaluation and normal

Tp_data=simulation_data(:,1);

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue;

% Variance = std ˆ 2; std=1 for standard normal distribution

% mean = 0; standard normal distribution

rng(’default’) % reset random seed

rng(’shuffle’) % shuffle random seed using CPU time (Always bes

Tp_data_noise = Tp_data + sqrt(1)*randn(size(Tp_data)) + 0; %

Tp_data_norm=norm_func(Tp_data);

Tp_data_norm_noise=norm_func(Tp_data_noise);

input=[Tp_data_norm_noise,Jt_data_norm,Rt_data_norm];

input=input’;

index=randperm(3600); % all simulation indexes

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av

% 70% Training Data

TrainData=[];

for i=1:2520

TrainData(:,i)=input(:,index(i));

end

129

% 15% Validation Data

ValidData=[];

for i=1:540

ValidData(:,i)=input(:,index(i+2520));

end

% 15% Test Data

TestData=[];

for i=1:540

TestData(:,i)=input(:,index(3060+i));

end

new_data_input=[TrainData,ValidData,TestData];

x=new_data_input;

Tp_y = net(x); % the prediction model is the same, only the inp

Tp_e = gsubtract(t,Tp_y); % deviations from the actual targets

Tp_performance = mse(net,t,Tp_y) % this is the MSE error value,

avg_Tp_y=mean(Tp_y);

med_Tp_y=median(Tp_y);

min_Tp_y=min(Tp_y);

max_Tp_y=max(Tp_y);

std_Tp_y=std(Tp_y);

avg_Tp_e=mean(Tp_e);

med_Tp_e=median(Tp_e);

min_Tp_e=min(Tp_e);

max_Tp_e=max(Tp_e);

std_Tp_e=std(Tp_e);

store_Tp_performance(test_run,:)=Tp_performance; % mse

Tp_y_avg_result(test_run,:)=avg_Tp_y;

Tp_y_med_result(test_run,:)=med_Tp_y;

Tp_y_min_result(test_run,:)=min_Tp_y;

Tp_y_max_result(test_run,:)=max_Tp_y;

Tp_y_std_result(test_run,:)=std_Tp_y;

Tp_e_avg_result(test_run,:)=avg_Tp_e;

Tp_e_med_result(test_run,:)=med_Tp_e;

130

Tp_e_min_result(test_run,:)=min_Tp_e;

Tp_e_max_result(test_run,:)=max_Tp_e;

Tp_e_std_result(test_run,:)=std_Tp_e;

%% Noisy Jt

% Jitter mathematical/statistical evaluation and normalization

Jt_data=simulation_data(:,2);

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue;

% Variance = std ˆ 2; std=1 for standard normal distribution

% mean = 0; standard normal distribution

rng(’default’) % reset random seed

rng(’shuffle’) % shuffle random seed using CPU time

Jt_data_noise = Jt_data + sqrt(1)*randn(size(Jt_data)) + 0; %

Jt_data_norm=norm_func(Jt_data);

Jt_data_norm_noise=norm_func(Jt_data_noise);

input=[Tp_data_norm,Jt_data_norm_noise,Rt_data_norm];

input=input’;

index=randperm(3600); % all simulation indexes

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av

% 70% Training Data

TrainData=[];

for i=1:2520

TrainData(:,i)=input(:,index(i));

end

% 15% Validation Data

ValidData=[];

for i=1:540

ValidData(:,i)=input(:,index(i+2520));

end

% 15% Test Data

TestData=[];

for i=1:540

TestData(:,i)=input(:,index(3060+i));

end

131

new_data_input=[TrainData,ValidData,TestData];

x=new_data_input;

Jt_y = net(x); % the prediction model is the same, only the inp

Jt_e = gsubtract(t,Jt_y); % deviations from the actual targets

Jt_performance = mse(net,t,Jt_y) % this is the MSE error value,

avg_Jt_y=mean(Jt_y);

med_Jt_y=median(Jt_y);

min_Jt_y=min(Jt_y);

max_Jt_y=max(Jt_y);

std_Jt_y=std(Jt_y);

avg_Jt_e=mean(Jt_e);

med_Jt_e=median(Jt_e);

min_Jt_e=min(Jt_e);

max_Jt_e=max(Jt_e);

std_Jt_e=std(Jt_e);

store_Jt_performance(test_run,:)=Jt_performance;

Jt_y_avg_result(test_run,:)=avg_Jt_y;

Jt_y_med_result(test_run,:)=med_Jt_y;

Jt_y_min_result(test_run,:)=min_Jt_y;

Jt_y_max_result(test_run,:)=max_Jt_y;

Jt_y_std_result(test_run,:)=std_Jt_y;

Jt_e_avg_result(test_run,:)=avg_Jt_e;

Jt_e_med_result(test_run,:)=med_Jt_e;

Jt_e_min_result(test_run,:)=min_Jt_e;

Jt_e_max_result(test_run,:)=max_Jt_e;

Jt_e_std_result(test_run,:)=std_Jt_e;

%% Noisy Rt

% Response mathematical/statistical evaluation and normalizatio

Rt_data=simulation_data(:,3);

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue;

% Variance = std ˆ 2; std=1 for standard normal distribution

% mean = 0; standard normal distribution

rng(’default’) % reset random seed

132

rng(’shuffle’) % shuffle random seed using CPU time

Rt_data_noise = Rt_data + sqrt(1)*randn(size(Rt_data)) + 0; %

Rt_data_norm=norm_func(Rt_data);

Rt_data_norm_noise=norm_func(Rt_data_noise);

input=[Tp_data_norm,Jt_data_norm,Rt_data_norm_noise];

input=input’;

index=randperm(3600); % all simulation indexes

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av

% 70% Training Data

TrainData=[];

for i=1:2520

TrainData(:,i)=input(:,index(i));

end

% 15% Validation Data

ValidData=[];

for i=1:540

ValidData(:,i)=input(:,index(i+2520));

end

% 15% Test Data

TestData=[];

for i=1:540

TestData(:,i)=input(:,index(3060+i));

end

new_data_input=[TrainData,ValidData,TestData];

x=new_data_input;

Rt_y = net(x); % the prediction model is the same, only the inp

Rt_e = gsubtract(t,Rt_y); % deviations from the actual targets

Rt_performance = mse(net,t,Rt_y) % this is the MSE error value,

avg_Rt_y=mean(Rt_y);

med_Rt_y=median(Rt_y);

min_Rt_y=min(Rt_y);

max_Rt_y=max(Rt_y);

std_Rt_y=std(Rt_y);

133

end

avg_Rt_e=mean(Rt_e);

med_Rt_e=median(Rt_e);

min_Rt_e=min(Rt_e);

max_Rt_e=max(Rt_e);

std_Rt_e=std(Rt_e);

store_Rt_performance(test_run,:)=Rt_performance;

Rt_y_avg_result(test_run,:)=avg_Rt_y;

Rt_y_med_result(test_run,:)=med_Rt_y;

Rt_y_min_result(test_run,:)=min_Rt_y;

Rt_y_max_result(test_run,:)=max_Rt_y;

Rt_y_std_result(test_run,:)=std_Rt_y;

Rt_e_avg_result(test_run,:)=avg_Rt_e;

Rt_e_med_result(test_run,:)=med_Rt_e;

Rt_e_min_result(test_run,:)=min_Rt_e;

Rt_e_max_result(test_run,:)=max_Rt_e;

Rt_e_std_result(test_run,:)=std_Rt_e;

% Perf Values % mse values (over 50 Runs)

avg_Normal_perf=mean(store_Normal_performance);

med_Normal_perf=median(store_Normal_performance);

min_Normal_perf=min(store_Normal_performance);

max_Normal_perf=max(store_Normal_performance);

std_Normal_perf=std(store_Normal_performance);

avg_Tp_perf=mean(store_Tp_performance)

med_Tp_perf=median(store_Tp_performance)

min_Tp_perf=min(store_Tp_performance)

max_Tp_perf=max(store_Tp_performance)

std_Tp_perf=std(store_Tp_performance)

avg_Jt_perf=mean(store_Jt_performance);

med_Jt_perf=median(store_Jt_performance);

min_Jt_perf=min(store_Jt_performance);

max_Jt_perf=max(store_Jt_performance);

std_Jt_perf=std(store_Jt_performance);

134

avg_Rt_perf=mean(store_Rt_performance);

med_Rt_perf=median(store_Rt_performance); %when Rt is noisy, eval

min_Rt_perf=min(store_Rt_performance);

max_Rt_perf=max(store_Rt_performance);

std_Rt_perf=std(store_Rt_performance);

plot(1:50,store_Normal_performance,’-g’,’LineWidth’,2)

hold on

plot(1:50,store_Tp_performance,’-b’,’LineWidth’,2)

plot(1:50,store_Jt_performance,’-y’,’LineWidth’,2)

plot(1:50,store_Rt_performance,’-r’,’LineWidth’,2)

ylim([0.007 0.03])

grid on

set(gca,’FontSize’,15,’FontWeight’,’bold’);

xlabel (’Number of Runs’,’FontSize’, 15, ’FontWeight’,’bold’)

ylabel (’MSE Values (Over 50 Runs)’,’FontSize’, 15,’FontWeight’,’bo

% legend1 = legend(’Normal Operating Condition’,’Noisy Tp’,’Noisy

legend1 = legend(’Normal’,’Noisy Tp’,’Noisy Jt’,’Noisy Rt’);

set(legend1,’FontSize’,10);

%legend(’Location’,’northeastoutside’)

% Hypothesis Test

% p-value

[p_Tp,h_Tp] = ranksum(store_Normal_performance,store_Tp_performance

[p_Jt,h_Jt] = ranksum(store_Normal_performance,store_Jt_performance

[p_Rt,h_Rt] = ranksum(store_Normal_performance,store_Rt_performance

135

C
FaTree topology code

"""Custom topology

Directly connected switches plus hosts for fat tree topology:

host --- switch --- switch --- host

Adding the ’topos’ dict with a key/value pair to generate

our newly definedtopology enables one to pass

in ’--topo=mytopo’ from the command line.

"""

from mininet.topo import Topo

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch

class MyTopo(Topo):

"FaT tree topology."

def init (self):

"Create custom topo."

Initialize topology

Topo. init (self)

Add hosts

#leftHost = self.addHost(’h1’)

#rightHost = self.addHost(’h2’)

h1=self.addHost(’h1’, cls=Host, ip=’10.0.0.1’, defaultRoute=None)

h2=self.addHost(’h2’, cls=Host, ip=’10.0.0.2’, defaultRoute=None)

Appendix

136

h3=self.addHost(’h3’, cls=Host, ip=’10.0.0.3’, defaultRoute=None)

h4=self.addHost(’h4’, cls=Host, ip=’10.0.0.4’, defaultRoute=None)

h5=self.addHost(’h5’, cls=Host, ip=’10.0.0.5’, defaultRoute=None)

h6=self.addHost(’h6’, cls=Host, ip=’10.0.0.6’, defaultRoute=None)

h7=self.addHost(’h7’, cls=Host, ip=’10.0.0.7’, defaultRoute=None)

h8=self.addHost(’h8’, cls=Host, ip=’10.0.0.8’, defaultRoute=None)

h9=self.addHost(’h9’, cls=Host, ip=’10.0.0.9’, defaultRoute=None)

h10=self.addHost(’h10’,cls=Host,ip=’10.0.0.10’,defaultRoute=None)

h11=self.addHost(’h11’,cls=Host,ip=’10.0.0.11’,defaultRoute=None)

h12=self.addHost(’h12’,cls=Host,ip=’10.0.0.12’,defaultRoute=None)

h13=self.addHost(’h13’,cls=Host,ip=’10.0.0.13’,defaultRoute=None)

h14=self.addHost(’h14’,cls=Host,ip=’10.0.0.14’,defaultRoute=None)

h15=self.addHost(’h15’,cls=Host,ip=’10.0.0.15’,defaultRoute=None)

h16=self.addHost(’h16’,cls=Host,ip=’10.0.0.16’,defaultRoute=None)

Add switches

#leftSwitch = self.addSwitch(’s3’)

#rightSwitch = self.addSwitch(’s4’)

s1 = self.addSwitch(’s1’, cls=OVSKernelSwitch)

s2 = self.addSwitch(’s2’, cls=OVSKernelSwitch)

s3 = self.addSwitch(’s3’, cls=OVSKernelSwitch)

s4 = self.addSwitch(’s4’, cls=OVSKernelSwitch)

s5 = self.addSwitch(’s5’, cls=OVSKernelSwitch)

s6 = self.addSwitch(’s6’, cls=OVSKernelSwitch)

s7 = self.addSwitch(’s7’, cls=OVSKernelSwitch)

s8 = self.addSwitch(’s8’, cls=OVSKernelSwitch)

s9 = self.addSwitch(’s9’, cls=OVSKernelSwitch)

s10 = self.addSwitch(’s10’, cls=OVSKernelSwitch)

Add links between switches

#self.addLink(leftHost, leftSwitch)

#self.addLink(leftSwitch, rightSwitch)

#self.addLink(rightSwitch, rightHost)

self.addLink(s1, s3)

self.addLink(s1, s5)

137

self.addLink(s2, s4)

self.addLink(s2, s6)

self.addLink(s3, s7)

self.addLink(s3, s8)

self.addLink(s4, s7)

self.addLink(s4, s8)

self.addLink(s5, s9)

self.addLink(s5, s10)

self.addLink(s6, s9)

self.addLink(s6, s10)

Add links between hosts

self.addLink(h1, s7)

self.addLink(h2, s7)

self.addLink(h3, s7)

self.addLink(h4, s7)

self.addLink(h5, s8)

self.addLink(h6, s8)

self.addLink(h7, s8)

self.addLink(h8, s8)

self.addLink(h9, s9)

self.addLink(h10, s9)

self.addLink(h11, s9)

self.addLink(h12, s9)

self.addLink(h13, s10)

self.addLink(h14, s10)

self.addLink(h15, s10)

self.addLink(h16, s10)

topos = { ’mytopo’: (lambda: MyTopo()) }

	An Investigation into the Security Vulnerabilities of Software Defined Network and the Design of Efficient Detection and Mitigation Techniques for DDoS Attack using Machine Learning Techniques
	Abstract
	Declaration
	Acknowledgements
	Publications and Presentations
	Contents
	LIST OF FIGURES

	List of Tables
	LIST OF TABLES

	Glossary
	1.1 Introduction
	1.2 Aim and Objectives
	1.3 Research Questions
	1.4 Scope of the Research
	1.5 Thesis Contribution
	• 1. Analysis of the impact of DDoS flooding attack in SDN
	• 3. Vulnerability assessment of SDN to spoofing attack and mitigation of DDoS attack using reactive flow rule insertion
	• 4. Implementation of machine learning algorithms for the detection of UDP, TCP and ICMP flooding attack in SDN
	• 5. Sensitivity analysis of DDoS attack detection metrics using Artificial Neu- ral Network

	1.6 Organisation of the Thesis

	2
	Background on SDN Architecture and Security
	2.1 Introduction
	2.2 Roadmap to SDN
	2.3 Comparison of SDN and Traditional Networks
	2.4 OpenFlow basics
	2.5 SDN Architecture
	2.5.1 Fundamental Characteristics of SDN
	2.5.2 SDN Development Platforms

	2.6 Security Issues and Vulnerabilities in SDN
	2.6.1 Uncovering Security flaws using STRIDE Approach
	2.6.2 Major Security Threats in the SDN Planes
	2.6.3 Security Vulnerabilities in the SDN Planes
	2.6.4 Security Solutions Platform in the SDN Planes according to ITU-T Specifications
	2.6.5 Recent Studies on DDoS Attacks Detection and Mitigation
	2.6.6 Recent Studies Using Sensitivity Analysis for DDoS Attacks Detection
	2.6.7 Overview and Classification of DDoS Attacks
	2.6.7.1 Overview of DDoS Attacks
	2.6.7.2 Classification of DDoS Attacks

	2.7 Summary

	3
	Detecting DDoS attacks in Software Defined Networks
	3.1 Introduction
	3.2 DDoS Attack Detection in Traditional Network
	3.3 DDoS Attack Detection in SDN
	3.4 DDoS Attack Strategy
	3.4.1 Vulnerability of SDN to DDoS Attack

	3.5 Types of DDoS Attacks in SDN
	3.5.1 ACK Flood
	3.5.2 SYN Flood
	3.5.3 Slowloris

	3.6 Experimental Approach
	3.6.1 Experimental Setup
	3.6.2 System Implementation

	3.7 Performance Evaluation
	3.8 Normality Test
	3.9 Result and Discussions
	3.9.1 Effect of DDoS Attack on the Server
	3.9.2 Severity of DDoS Attacks on Server
	3.9.3 DDoS Detection Accuracy
	3.9.4 Effect of DDoS Attack on Mean Throughput using different Window Size

	3.10 Machine Learning Approach to DDoS Attack De- tection in SDN
	3.11 Proposed solution
	3.11.1 System Architecture and Setup
	3.11.2 Data Collection
	3.11.3 Classification methodology
	3.11.3.1 Logistic Regression
	3.11.3.2 Linear Discriminant Analysis
	3.11.3.3 K Nearest Neighbour
	3.11.3.4 Naive Bayes
	3.11.3.5 Classification and Regression Tree
	3.11.3.6 Support Vector Machine

	3.12 Result and Discussions
	3.12.1 Evaluation metrics
	3.12.2 Experimental results
	3.12.2.1 Attributes correlation matrix
	3.12.2.2 Prediction accuracy
	3.12.2.3 Precision and Recall

	3.13 Summary

	4
	Reconnaissance, Attack Launch and Mitigation
	4.1 Introduction
	4.2 Understanding Network Environment
	4.2.1 Available Attack tools for gathering information

	4.3 Model Formalisation
	4.3.1 System Architecture
	4.3.2 Experimental Approach
	4.3.2.1 Hardware and Software Settings

	4.4 Active Reconnaissance, Attack Strategy and Coun- termeasure
	4.4.1 Active Reconnaissance
	4.4.2 Attack Strategy
	4.4.3 Countermeasure

	4.5 Result and Analysis
	4.5.1 Effect of DDoS Attack on System Response time
	4.5.2 Computational Resource Consumption
	4.5.3 Effect of DDoS Attack on Packet Count
	4.5.4 Effect of DDoS Attack on Jitter
	4.5.5 Effect of DDoS Attack on Throughput

	4.6 Summary

	5
	Sensitivity Analysis of Detection Parameters
	5.1 Introduction
	5.2 Sensitivity Analysis
	5.2.1 Types of Sensitivity Analysis
	5.2.1.1 Local Sensitivity Analysis
	5.2.1.2 Global Sensitivity Analysis

	5.3 Artificial Neural Network Application to Sensitiv- ity Analysis
	5.3.1 Neural Network Training Algorithms

	5.4 Description of Dataset
	5.5 Experimental Approach
	5.5.1 Data Normalisation
	5.5.2 Cost function value evaluation
	5.5.3 AWGN and MSE
	5.5.4 ANN training

	5.6 Result and Discussions
	5.6.1 Hypothesis test

	5.7 Summary

	6
	Conclusions and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

	A
	Results of Local sensitivity analysis of Tp

	C
	FaTree topology code

