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Abstract 

 

 
Abimbola Oladimeji Sangodoyin 

Design and Analysis of Anomaly Detection and Mitigation Schemes for 

Distributed Denial of Service Attacks in Software Defined Network. 

An Investigation into the Security Vulnerabilities of Software Defined Net- 

work and the Design of Efficient Detection and Mitigation Techniques for 

DDoS Attack using Machine Learning Techniques. 

Keywords: Software Defined Network, DDoS, Network security, Attack 

detection, Attack mitigation, Controller. 

Software Defined Networks (SDN) has created great potential and hope to 

overcome the need for secure, reliable and well managed next generation 

networks to drive effective service delivery on the go and meet the demand 

for high data rate and seamless connectivity expected by users. Thus, it  

is a network technology that is set to enhance our day-to-day activities. 

As network usage and reliance on computer technology are increasing 

and popular, users with bad intentions exploit the inherent weakness of 

this technology to render targeted services unavailable to legitimate users. 

Among the security weaknesses of SDN is Distributed Denial of Service 

(DDoS) attacks. 

Even though DDoS attack strategy is known, the number of successful 

DDoS attacks launched has seen an increment at an alarming rate over 

the last decade. Existing detection mechanisms depend on signatures of 

known attacks which has not been successful in detecting unknown or  

different shades of DDoS attacks. Therefore, a novel detection mechanism 

that relies on deviation from confidence interval obtained from the normal 

distribution of throughput polled without attack from the server. 
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Furthermore, sensitivity analysis to determine which of the network met- 

rics (jitter, throughput and response time) is more sensitive to attack by 

introducing white Gaussian noise and evaluating the local sensitivity us- 

ing feed-forward artificial neural network is evaluated. All metrics are 

sensitive in detecting DDoS attacks. However, jitter appears to be the 

most sensitive to attack. As a result, the developed framework provides 

an avenue to make the SDN technology more robust and secure to DDoS 

attacks. 
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1 
INTRODUCTION 

 
1.1 Introduction 

Computer networks have become part of our everyday lives from the government to 

commercial enterprises to individuals [88]. These networks are built from a large 

number of devices such as routers, switches and middleboxes with complex protocols 

running on them. Operating and maintaining a computer network infrastructure for 

secure and seamless connectivity is not an easy task and remains a challenging task 

as advancement and demand for ubiquitous connections from end users is increasing. 

The race to keep up with network administration tasks is further heightened due to the 

integration of software to our daily routine and wide adoption of smart mobile devices 

and lately internet-of-things. To accommodate the continually changing demand of the 

network environment, network administrators are saddled with the responsibility of 

configuring vendor-specific devices and setting configuration policies for effective and 

reliable operation. As a result, network management and dynamic response to events 

and applications are arduous and prone to error. Similarly, in the face of growing traffic 

and demand for more data rates from consumers, the service providers need to keep 

up with the pace through investments in bigger and faster links and edge routers, even 

though revenues are growing quite slowly [32] [118]. 

In view of the pressing challenges network administrators and vendors are faced 

with, there is a need to optimise and bring innovation to existing network design and 

architecture. The innovation is expected to bear in mind cost, programmability, and 
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how robust the network is, in meeting the increasing demand of users. Thus, the emer- 

gence of Software Defined Network (SDN). 

As a revolutionary concept, SDN has created great potential and hope to overcome 

the need for flexible, secure, reliable, and well managed next generation networks [3]. 

SDN separates the control and data plane in networks such that switches become sim- 

ple data forwarding devices and network management is controlled by logically cen- 

tralised controller. This remarkable feature of SDN provides a programmable, vendor- 

agnostic, cost effective and innovative network architecture. 

The future of SDN lies in its acceptance and deployment. Even though technology 

and its deployment take years before it can be available to end users due to standardi- 

sation process and Request For Comments (RFC). However, speculations remain as to 

whether the same should be expected for SDN or not. So far, the need for researchers to 

run experiments for campus networks gave birth to the deployment of SDN on a small 

scale which subsequently led to the proposal of new network architecture, ETHANE, 

for enterprise network [88], [23]. Figure 1.1 shows the conventional development 

trend of technology[111]. 

Figure 1.1: Diffusion of innovation 

 
The trend of SDN might differ slightly from this conventional trend as network 

equipment manufacturers and vendors are interested in the promising nature of the 

SDN technology and its implementation, as seen from Google B4 deployment in WAN 

data centre [68], VMware NSX virtualisation platform [132], and Linux foundation 

collaborative project, OpenDaylight[109]. 

In spite of the programmability, flexibility, universal connectivity and centralised 
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control, which are critical to the success of SDN, these features are at odds with mak- 

ing it more secure. The SDN platform can bring with it several security breaches which 

include an increased potential for Distributed Denial-of-Service (DDoS) attacks due to 

controller centralisation and flow table limitations in network devices[120]. Further- 

more, the abstraction of flows and underlying hardware resources make it easier for 

harvesting of intelligence which can be used effortlessly for further exploitation and 

reprogramming the entire network by malicious user [78] [118]. 

 
1.2 Aim and Objectives 

In today’s world, many networks are connected. Security breach spreads at an alarming 

rate, sometimes spanning the globe within hours or days. Even enterprises that have 

secure perimeters often find themselves with significant internal security breaches. As 

a result, security-focused SDN architecture is designed to keep malicious users at bay. 

Consequently, this study is aimed at: 

• Effectively detecting and mitigating distributed denial of service attack in soft- 

ware defined networks using statistical analysis and machine learning approach to 

achieve better system performance and availability to legitimate users. 

To achieve the stated aim, the following objectives are defined: 

• Identification of SDN vulnerabilities and investigation of existing SDN security 

solutions related to DDoS in SDN 

• Design and implementation of network topology to extract real time SDN traffic 

data before and after DDoS attack 

• Model a statistical and machine learning techniques that are simple, less compu- 

tationally intense and offers the best performance in detecting DDoS attacks 

• Perform sensitivity analysis on selected network traffic attributes for attack traf- 

fic classification 
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1.3 Research Questions 

Research Question 1 Although the deployment of SDN promises to significantly im- 

prove network applicability and efficiency, the programmability aspect also makes it 

more vulnerable to a number of attacks and configuration errors which may pose more 

serious consequences than in traditional networks. Hence, How vulnerable is SDN to 

DDoS attack? 

Research Question 2 Technologies that are not developed with security and pri- 

vacy in mind will eventually constitute the weakest link in a network. With high-speed 

data transfer and signalling, attack on a very large scale can generate large signalling 

storm that can take a network down in no time. This gives rise to Research question 2: 

What is the impact of DDoS attack on SDN? knowing if DDoS attack has significant 

impact on the SDN architecture create an avenue to build robust security measures to 

mitigate DDoS attacks in SDN controller. 

Research Question 3 Even though DDoS attack strategy is known,Why is it dif- 

ficult to handle DDoS attacks? In addition, are there deployment points suitable to 

mitigate DDoS attack? 

Research Question 4 Several detection techniques are available in the public do- 

main, yet, DDoS attack is on the increase. Hence, the need for effective detection 

techniques. Which defense mechanism is lightweight and at what interval can net- 

work traffic be polled? Also, given a known detection mechanism, How would they 

perform if an unknown attack variant occurred? 

Research Question 5 A lot of DDoS datasets exists in the research community 

with several metrics utilised in detecting DDoS attack. This gives rise to the question 

How sensitive are DDoS attack impact metrics in detecting and mitigating attacks 

in SDN. Having only the sensitive metrics may reduce complex computation time and 

demand for high-performance computing hardware in detecting and mitigating attacks. 

Security should be considered when the architecture is designed, not an after- 

thought or a patch. Hence, the need to build robust security solutions around SDN 

architecture to combat shades of attack. 
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1.4 Scope of the Research 

This research focuses on the use of machine learning techniques and statistical anal- 

ysis to effectively detect DDoS attacks in SDN. It investigates the vulnerabilities of 

the SDN network using Kali Linux, and DDoS flooding attacks launched on the net- 

work using open source Low Orbit Ion Canon (LOIC) attack tool. Custom network 

topologies were modelled using Mininet and all simulations performed in an isolated 

network using Oracle virtual box and Linux operating system (Ubuntu). 

Real SDN traffic datasets for DDoS flooding and attack free network traffic were 

extracted and cleaned using KNIME as discussed in Chapter 3 and Chapter 4. 

It is worth noting that all DDoS flooding attacks launched were orchestrated from 

internal network. Hence, DDoS attacks launched through external networks are not 

covered and are outside the scope of this work. 

 
1.5 Thesis Contribution 

This thesis centres on effectively detecting and mitigating distributed denial of service 

attacks in software defined networks. The core contributions of the research encompass 

five areas: 

• 1. Analysis of the impact of DDoS flooding attack in SDN 

Despite the concerted efforts by researchers for detecting and mitigating the 

menace of DDoS attacks, it is continuously growing in volume and severity. 

SDN as a revolutionary concept alters existing network architecture and decou- 

ples data plane from control plane for interoperability and network programma- 

bility. Hence, the need to analyse the impact of DDoS attacks on the new archi- 

tecture. Using throughput and jitter as impact metrics, this study reveals that for 

an SDN network, a DDoS attack on the infrastructure plane will highly degrade 

network performance. 

• 2. A lightweight approach to detect DDoS attacks using statistical analysis 

Various DDoS detection mechanisms rely on pattern recognition to identify at- 

tacks. Understanding network characteristics such as protocols, CPU utilisation, 
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delay, throughput, packet header, and packet size will help in determining the 

type of detection mechanism to be deployed. Hence, most techniques rely on 

data collection, filtering, and processing for anomaly detection using statistics 

and machine learning techniques [10]. In this research,  a statistical approach  

to detect DDoS flooding attacks in SDN is presented. It offers unique comple- 

mentary advantages compared to existing methods by employing a lightweight 

approach to detect DDoS flooding attacks. Our detection mechanism relies on 

deviation from the confidence interval obtained from the normal distribution of 

throughput polled without attack from the server. Similarly, data collected effec- 

tively with less overhead from victim server using ‘iperf’ i.e. heavy communi- 

cation between controller and switches is reduced. 

• 3. Vulnerability assessment of SDN to spoofing attack and mitigation of 

DDoS attack using reactive flow rule insertion 

Information gathering is an essential step needed to gain access to a network. It 

involves knowing which information is useful for launching an attack and how 

to extract it through reconnaissance. In this work, the feasibility of spoofing and 

flooding DDoS attacks on data plane devices in SDN using Mininet emulator, 

floodlight controller, and network performance testing tools is demonstrated. 

Furthermore, these attacks are mitigated by pushing reactive flow through the 

controller to the attacking switch port. 

• 4. Implementation of machine learning algorithms for the detection of UDP, 

TCP and ICMP flooding attack in SDN 

Machine learning is a wide interdisciplinary area of research that involves learn- 

ing patterns from datasets for the computer to perform a specific task without 

explicit instructions and it has been applied in research to detect DDoS attacks. 

All DDoS detection techniques leverage on identifying key features (traffic flow 

metrics) relevant to identify malicious traffic from benign traffic. Our approach 

is simpler and mimics network architecture obtainable in a mid-sized enterprise 

network. A new dataset that contains three types of DDoS attacks namely: 

UDP flood, TCP flood, and HTTP flood are simulated in a controlled environ- 

ment. The TCP, UDP, and ICMP flood attacks are considered because the pro- 
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tocols represent a large portion of web application traffic usage and characteris- 

tics. Also, six different machine learning algorithm is applied to the generated 

datasets for the detection of UDP, TCP, and HTTP flooding attacks. 

• 5. Sensitivity analysis of DDoS attack detection metrics using Artificial Neu- 

ral Network 

Sensitivity analysis offers an efficient approach to assess the extent to which 

output is affected by changes in input variables. One of the key advantages of 

sensitivity analysis is that it identifies critical variables that may be given less 

consideration when designing a robust detection model. This research is a novel 

attempt to identify network parameters that are more sensitive in detecting DDoS 

attacks in SDN by implementing local sensitivity analysis using artificial neural 

networks to identify key network metrics that mainly influence the prediction of 

whether an SDN is under attack or secure. 

Figure 1.2 outlines the relationship between the thesis contribution, research questions 

answered and how it has been addressed in the thesis chapters. The research outcome 

has led to a number of publications listed under publications and presentation section. 
 

Figure 1.2: Relationship between chapters and research questions 
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1.6 Organisation of the Thesis 

This thesis is divided into six chapters. The first chapter introduces the concept of SDN 

and highlights the aim and objectives of the research together with research questions 

and scope of the research. The remainder of this thesis is organised as follows: 

• Chapter2 reviews the roadmap to SDN and the internal architecture of SDN. 

This chapter also examines the security threats and vulnerabilities in the archi- 

tecture. Also, the research trend in SDN security and analysis coupled with 

available security solutions platform in the SDN planes according to ITU-T spec- 

ifications is presented. 

• Chapter3 presents an overview of DDoS attack. Available DDOS detection 

mechanism in both SDN and the traditional network is explored. Simulation 

scenarios are setup with DDoS flooding attack launched against TCP and UDP 

server. Statistical and Machine learning approach to detect DDoS attacks were 

looked at. Some of the algorithms that were considered include Support Vector 

Machine, Classification and Regression Trees and Linear Discriminant Analysis. 

• Chapter4 presents an information gathering session to explore vulnerabilities 

in SDN using Nmap scanner. The results obtained are used to spoof source IP 

address to launch DDoS attacks on the server. The attack launched is mitigated 

by pushing reactive flow to the attacking switch port via the controller. 

• Chapter5 presents the sensitivity analysis of DDoS attack impact metrics con- 

sidered in the previous chapter. This chapter examines which of the impact met- 

rics(Jitter, throughput and response time) is more sensitive to DDoS attacks. 

Feed forward Artificial Neural Network (ANN) is used to generate input data 

and local sensitivity analysis is performed on the normalised data 

• Chapter6 This chapter presents the conclusion of the thesis and recommends a 

future research direction. 
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2 
Background on SDN Architecture and 

Security 

 
2.1 Introduction 

This chapter, which is made up of two major sections, describes the SDN architecture 

and SDN security. Firstly, a brief history of SDN followed by a general overview of 

SDN architecture and comparison of security between traditional network and SDN is 

presented. The security issues and vulnerabilities of SDN are then examined. One of 

the security issues SDN is prone to is Distributed Denial of Service attacks. This led 

to Overview of DDoS attacks and classification. 

 
2.2 Roadmap to SDN 

Networking devices have been successfully developed and deployed over the past few 

years [54]. This has led to migration functionality grown into hardware as shown in 

Figure. 2.1. Each device is designed to be autonomous to the greatest extent possible 

due to relatively small fixed networks and shared domain. Hence, the introduction of 

intelligence resident in every device and the birth of vendor-agnostic devices [54]. 

However, the traditional network architecture is at a point where its ability to adapt to 

changing user demands, like those enabled by virtualisation technologies has become 

a hindrance [123] 

 
Chapter 
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Figure 2.1: Migration of network functionality to hardware 

[54] 

 
While SDN is seen as an evolving networking paradigm, it is worth noting that the 

concept of programmable networks that matures into SDN has been around for many 

years [102]. Precursors to SDN began with Open Signalling (OpenSig) with the in- 

tent of making internet and many mobile networks more programmable [21]. This 

further progressed to General Switch Management Protocol (GSMP) by using a con- 

troller to perform resource allocation on a multicast connection [40]. Similarly, active 

networking [129] [137] proposed the concept of programmable network infrastruc- 

ture to support customised services. However, this idea received little attention due to 

security and performance concerns [92]. 

Another concept of decoupling control and management functions is raised in the 

4D project [55] [20]. The authors proposed clean slate design for separation between 

routing decision logic and governing protocols between network devices. In line with 

this approach, a management protocol responsible for the modification of network de- 

vices is proposed by NETCONF [46]. The proposed management protocol is saddled 

with the responsibility of overcoming the security limitations of SNMP. 

SANE [24] and ETHANE [23] defined a new network architecture for an enter- 

prise network. The research work laid the foundation for SDN. Consequently, ForCES 

[41] and OpenFlow [88] standardise information exchange between SDN planes. Im- 

plementation of globally deployed software defined WAN has also been witnessed in 

the datacentre network [68]. Figure 2.2 shows the timeline of SDN technology matu- 

rity.  With the formation of a consortium called Open Networking Foundation  (ONF) 
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Figure 2.2: SDN technology development 

 
to promote networking through SDN and the standardisation of OpenFlow protocol 

and related technologies, acceptance and implementation of SDN technology is not far 

from reach. 

 
2.3 Comparison of SDN and Traditional Networks 

The traditional approach to networking involves assigning a complete computing unit 

to a single task. This approach is effective and works fine in a small scale network. 

However, as networks grow in size, they become much more complex to manage and 

maintain. On the other hand, SDN seems to address some of the limitations inherent 

in the traditional network. Table 2.1 [18] presents a comparison between traditional 

network and SDN in handling security issues. 
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Table 2.1: Security in Traditional network vs SDN 
 
 

Security Challenges Traditional approach SDN based approach Benefits of SDN 

 
Perimeter security 

 

 

 
 

 

 

 

 
New security threat 

perimeter defined 

through physical 

objects 

Each device statically 

configured 

 

Each device operates 

autonomously 

 

security signature is 

identified 

perimeter defined 

through application 

layer 

Different policies can 

be applied to external 

and internal traffic 

single configuration is 

possible for all security 

devices in each domain 

 

End-to-end network 

visibility is derived 

from centralised con- 

troller 

Policy is decoupled 

from physical perimeter 

 

Policies applied based 

on application-layer at- 

tributes 

Security complexity 

does not increase to 

changes in logical 

perimeter 

Operations staff can 

react to threats from 

controller 

User is located with 

available tools within 

the system 

- Significant reduction 

in network devices re- 

quired for security pro- 

cessing, thereby reduc- 

ing capital expenditure 

user is denied network 

access 

Fine-grained counter- - 

measure policy in real- 

time 

malicious  user moves   - - 

to another vulnerable 

port to launch an attack 

High Scalability  Requires proportional 

increase in hardware to 

meet user demands 

virtualised process re- 

duce hardware demand 

Improves resource al- 

location and utilisation 

Proactive patch man- 

agement 

Difficult to achieve in 

a consistent manner due 

to the availability of fi- 

nite resources in em- 

bedded device 

Centralised patch 

management to re- 

spond rapidly to new 

threats 

Simpler to introduce 

enhanced features 

 
 

 

2.4 OpenFlow basics 

Most switches and routers available in the market are vendor specifics, running their 

own IOS and do not typically provide an open software platform. This creates the need 

to virtualise their hardware or software next to nothing. This closed source IOS does 

not give room for researchers to experiment with new ideas and network vendors are 

understandably nervous about disclosing their extensive and fragile distributed proto- 

cols and algorithms [88]. The reason for this is not far-fetched; it simply lowers the 

barrier for new competitors. 
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The OpenFlow started as an academic experiment and rapidly gained significance 

which subsequently led to the consortium of industry giants to form Open Networking 

Foundation (ONF) [104]. 

OpenFlow brings to the fore the concept known as Application Programming In- 

terface (API) which allows direct access to manipulation of the forwarding plane of 

network devices such as routers and switches, both physical and virtual [3]. 

An OpenFlow switch typically consists of a flow table as shown in Figure. 2.3, 

which performs packet lookup and forwarding. Each table in an open flow switch 

holds a set of entries that consist of the following: 

• Header fields or match fields, with information found in packet header, ingress 

port, and metadata used to match incoming packets. 

• Counters, used to collect statistics of particular flow, such as number of received 

packets, number of bytes, and duration of the flow. 

• A set of instructions to be applied after a match rule that dictates how to handle 

matching packets [29]. 
 

 

 

Figure 2.3: OpenFlow enabled SDN device [78] 

 
Inside an OpenFlow device, there is a set of algorithm that defines what goes where 

when a packet arrives based on the matching flow rule. A flow rule is a combination 

of different matching rule. If there is no default matching rule, then, the packet will be 

discarded. The priority of rules follow the natural sequence number of the table and 

the row order. It is worthy of note that the throughput of commercial OpenFlow switch 

is relatively low (500-1000 flow-mod per second) which is a limiting factor [15]. 
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Figure 2.4: SDN architecture illustrating the infrastructure, control and application 

layers. [118] 

 

2.5 SDN Architecture 

SDN architecture encompasses the complete network platform. It is a modular ap- 

proach that defines chain of command and interoperability within the network [118]. 

Unlike traditional network, the intelligence of data plane devices is removed to a logi- 

cally centralised control system [54]. Figure 2.4 presents the SDN architecture show- 

ing the data/infrastructure, control and application layer. 

In Figure 2.4, there are two main elements: the controllers and the forwarding 

devices. A forwarding device is a hardware or software element specialised in packet 

forwarding and based on a pipeline of flow tables where each entry of a flow table 

has: a matching rule, action to be executed on matching packets and counters that keep 

statistics of matching packets [78]. The controller serves as the brain of the network 

and it deals with the management of network state. Below is a description of various 

layers [118]: 

Infrastructure layer: This layer is also known as data plane. It consists of simple 
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forwarding elements without embedded control or software to make autonomous de- 

cisions. It is accessible through the southbound interface and allows packet switching 

and forwarding. 

Control layer: This layer consists of SDN controllers providing a consolidated 

control functionalities through Application Programming Interfaces (APIs). The cru- 

cial value of the controller is to provide abstractions, essential services, and common 

APIs to developers. Three communication interfaces allow the controller to interact: 

northbound, southbound and the east/westbound interfaces. 

• Southbound Interfaces: Southbound interface allows the controller and forward- 

ing elements to interact in the infrastructure layer, thus being the crucial instru- 

ment for clearly separating the control and data plane functionality. 

• Northbound Interfaces: This interface is the connecting bridge between the ap- 

plication layer and control layer. It enables the programmability of the con- 

trollers by exposing the data models and other functionalities within the con- 

trollers for use by applications at the application layer. The northbound interface 

is mostly a software ecosystem, hence, a common northbound interface is still 

an open issue. 

• East/Westbound Interfaces: This interface is a special communication interface 

provisioned for distributed controllers to synchronise state for high availability. 

Its function includes import/export data between controllers and monitoring/no- 

tification capabilities to check if a controller is up or notify a takeover on a set 

of forwarding elements. 

 

Application Layer: The application layer consists of end-user business applica- 

tions and network services. Example of application that runs here is network virtuali- 

sation. Network policy is also defined here. 

 
2.5.1 Fundamental Characteristics of SDN 

SDN is characterised by five fundamental traits namely: plane separation, network au- 

tomation and virtualisation, centralised control, openness and simplified device [29]. 
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• plane separation: with the data plane separated from the control plane, a level of 

packet forwarding intelligence has been added to the controller. Consequently, 

this led to a reduction in long convergence time for changes made in SDN net- 

work. 

• network virtualisation: Network virtualisation creates an avenue for multiple 

virtual networks to run over a shared infrastructure [47]. Each virtual network 

created can have simpler topology than the underlying hardware. With virtuali- 

sation, it is easier to spin up multiple virtual devices more portable, scalable and 

cost-effective mid-sized and small scale office network. 

• centralised control: Since the control plane resides in the controller, the con- 

troller sees and know where each host connects to the network and the type of 

topology that connects the network.  Centralisation allows network engineers  

to implement unique, flexible forwarding policies and monitoring/management 

protocols only limited by the ability of software running on it. 

• openness: Openness in SDN means that the four compass point of Northbound, 

Southbound, Eastbound and Westbound interfaces should remain standard and 

not proprietary. This would make communication simple, robust and perhaps 

most important, extensible. In addition, openness in the SDN controller helps 

network providers and customers add value to the platform with their innovation. 

• simplified device: with the separation of data from the control plane, thousands 

of lines of complicated control plane software to enable autonomous behaviour 

has been removed. Hence, fast decisions based on forwarding instructions from 

the controller can be executed by data plane devices with less memory require- 

ment. 

 
2.5.2 SDN Development Platforms 

With simulators, network administrators are better equipped to analyse the complexity 

of their network. There are many platforms that can be used to simulate or emulate 

SDN projects. Table 2.2 shows the list of SDN development platforms available today 

[5] 
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Table 2.2: SDN development platforms 
 

Platform Mininet Estinet NS-3 Trema 

Last version 2.2.1 9.0 3.26 0.10.1 

Vendor Stanford University, ON. Lab   Estinet technologies Inc.  NS-3 project  NEC Corporation 

Website  www.mininet.org www.estinet.com www.nsnam.org trema.github.io/trema/ 

Operating System Ubuntu, Fedora Linux, Fedora GNU/Linux, Windows, Mac GNU/Debian, Ubuntu, Fedora 

Emulation mode  Yes  Yes  No Yes 

Simulation mode No Yes Yes No 

Free/Proprietary Free Proprietary Free Free 

 

2.6 Security Issues and Vulnerabilities in SDN 

Although SDN promises more robust security features than traditional networks, SDN 

itself is not fully immune to attacks. The separation of the control plane from the  

data plane expose the network to a range of new attacks if identified loopholes are not 

addressed before deploying. 

 
2.6.1 Uncovering Security flaws using STRIDE Approach 

Network and computer security are built on three pillars commonly referred to as Con- 

fidentiality, Integrity and Availability. Figure 2.5 presents a simple but widely appli- 

cable CIA triad with their mitigation techniques. A data is said to be confidential if it 

can only be assessed by those authorised to use it and no one else. Integrity comes in 

when the information remains the same or identical to its state when the last authorised 

user assessed it. Data is available when it is accessible only to authorised users in a 

convenient format within a reasonable time. 

Three key parameters that often come up in computer security issues are: 1. Vul- 

nerability 2. Threat and 3. Countermeasures. 

The state where a system is susceptible to attack is the vulnerability state, while 

threat is a potential violation of system security. Countermeasures are the techniques 

employed for protecting the system. 

In SDN, there are two main properties which can serve as attractive honeypots for 

malicious users and headache for the less prepared enterprise. First, the ability to con- 

trol networks by means of software. Second, the centralisation of network intelligence 

in the controller. A malicious user with access to the controller can modify/control the 

entire network. Common attack types present in today’s network can be summarised 

http://www.mininet.org/
http://www.estinet.com/
http://www.nsnam.org/
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Figure 2.5: CIA Triad 

 
under STRIDE approach as shown in Table 2.3. The STRIDE approach seems to give 

a broad view of available attack types [44]. However, grey hat hackers keep evolving 

and attack types keep increasing by the day. 

Table 2.3: Microsoft STRIDE attack types and security properties [48] 
 

Attack type Security property 
 

Spoofing Authentication 

Tampering Integrity 

Repudiation Non-repudiation 

Information disclosure Confidentiality 

Denial of service Availability 

Elevation of privileges Authorisation 

 

• Spoofing: In this approach, the application or a malicious user masquerades with 

the purpose of concealing their identity and impersonate to gain unauthorised 

access to a network. 

• Tampering: Tampering refers to the intentional modification of data so as to 

compromise the integrity of data sent or received. 
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• Repudiation: Repudiation attack happens when a system does not track and log 

users’ actions properly, thus permitting malicious manipulation of new actions. 

• Information disclosure: This is often targeted at breaching the confidentiality 

reposed by end users’ on enterprise. 

• Denial of service: Denial-of-service (DoS) attack can be very serious in an en- 

terprise network because it prevents intended users from accessing temporarily 

or indefinitely resources they would normally expect to have. 

• Elevation of privileges: The main aim of a malicious attacker is to have access 

to privilege information or access contents reserved for higher privileged users. 

 

Although attacks have different level of severity, it is a worthy practice to have appro- 

priate security measures in place. 

 
2.6.2 Major Security Threats in the SDN Planes 

According to [77] seven threat vectors were identified and three are more specific to 

SDN namely: 

• Threat vector 1 – forged or fake traffic flows: this traffic can be used to attack 

switches and controllers. This threat can overwhelm the switch and controller 

flow tables and inject latency into the network. Possible solution: the use of 

Intrusion Detection System (IDS) with support for run-time root-cause analysis 

could help identify abnormal flows in the network. 

• Threat vector 2 – attacks on vulnerabilities in switches: A susceptible switch 

may drop, slow down or redirect packets to overload neighbouring switches or 

controllers. Possible solution: deploying autonomic trust management solutions 

for network devices operating system. 

• Threat vector 3 – attacks on control plane communications: this attack explores 

vulnerabilities in the protocol such as TLS/SSL that comprises the controller- 

device link. Possible Solution: securing communication with threshold cryptog- 

raphy across controller replicas. 
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• Threat vector 4 – attacks on vulnerabilities in controllers: the controller is the 

honeypot of the network. This attack is specific to SDN and is probably the 

most severe threat the network can experience. The use of common IDS may 

not be enough to mitigate this problem. Possible solutions: securing all sensitive 

elements such as crypto keys and secrets in the controller. Another solution is 

employing a diversity of controllers, programming languages and protocols used 

in communications. 

• Threat vector 5 – Lack of mechanisms to ensure trust between the controller 

and management applications: the techniques used to certify network devices 

are different from those used for applications. Multi-vendor applications and 

controllers lack the ability to establish trusted relationships. Possible solution:  

a robust autonomic trust management certificate could help guarantee a trusted 

application during its lifetime. 

• Threat vector 6 – vulnerabilities in administrative stations: administrative sta- 

tions are potential exploitable target in the current network.  The impact can   

be severe in SDN because it makes programming and launching of coordinated 

attacks from a single location. Possible solution: employing the use of proto- 

cols requiring double credential verifications e.g. requiring two different users 

to access a control server. 

• Threat vector 7 – lack of trusted resources for remediation: good understanding 

of the cause of network failure and secure recovery mode will help prevent future 

network downtime. Possible solution: good logging and tracing mechanisms in 

the data and control plane will help address this problem. 

 

The identified threats provide an avenue for adequate understanding and good risk 

analysis which will make SDN more secure and dependable than the current network. 

Threat vectors 3, 4 and 5 are specific to SDN as shown in Table 2.4. These vectors 

arise as a result of the separation of control plane and data plane and the introduction 

of controller. 
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Table 2.4: SDN specific vs non-specific threats [77] 
 

Threats Specific to SDN? Consequences in SDN 

Vector 1 No Open door for DDoS attacks 

Vector 2 No Potential attack inflation 

Vector 3 Yes Exploiting logically centralised controllers 

Vector 4 Yes Network compromise 

Vector 5 Yes Easy development and deployment of malicious ap- 
  plications on controllers 

Vector 6 No Potential attack inflation 

Vector 7 No Negative impact on fast recovery and fault diagnosis. 

 
2.6.3 Security Vulnerabilities in the SDN Planes 

A number of security vulnerabilities have been identified both in OpenFlow protocol 

and SDN architecture [12]. Most of the vulnerabilities are due to the powerful author- 

ity granted to SDN and third-party applications. Table 2.5 shows the attack types SDN 

planes are prone to with respect to the severity of attacks. It can be seen from Table 2.5 

and 2.6 that DDoS attack poses a high risk to the continuous operation of SDN con- 

troller when under attack. At present, there is no standardised universal classification 

or methodology for vulnerability analysis. Although the use of Common Vulnerability 

Scoring System (CVSS) has been reported in [146]. 

Table 2.5: Security vulnerabilities in SDN according to planes 
 

SDN Plane Attack types Level of Severity Possible Countermeasures 

Information leakage Low Use of strong encryption 

Application abuse Medium Update security patches regularly 

Application 
API abuse

 Low Use of strong encryption 

Communication hijacking Low Use of strong encryption 

Masquerading Low Use of strong encryption 

DDoS attack High Islanding, Rate limiting,Packet dropping techniques 

Control 
Network manipulation High Having distributed controllers with different vendors 

DDoS Attack High Islanding, Rate limiting,Packet dropping techniques 

DDoS attack High Islanding, Rate limiting, Packet dropping techniques 

Infrastructure 
Compromised network Medium Use of strong encryption 

Compromised system low Change vendor default password 

Communication hijacking Medium Use of strong encryption 
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Table 2.6: DDoS attacks on SDN layers [33] 
 

Plane Possible attacks 
 

Data Plane TCAM exhaustion, switch DDoS, ICMP flood, TCP flood, TCP-SYN flood 

Control plane  Resource depletion, OpenFlow bandwidth exhaustion, amplification attacks 

Application plane Exhausting northbound API, application layer DDoS (HTTP flooding, slowloris) 

 

2.6.4 Security Solutions Platform in the SDN Planes according to 

ITU-T Specifications 

According to ITU, a secure network should be protected against malicious attack and 

should have appropriate response time, reliability and high availability [65]. ITU-T 

recommendation identifies eight of such sets that protects against all major security 

threats. The identified security dimensions are: access control, authentication, non- 

repudiation, data confidentiality, communication security, data integrity, availability 

and privacy. The security dimensions provide an end-to-end solution when applied 

to the security layers. Table 2.7 presents SDN solutions according to security dimen- 

sions recommended by ITU-T. The remark reflects the current state of stable solutions 

available both in research and practice. 
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Table 2.7: Security solutions according to ITU-T security recommendations [2] 
 

 Security prop- 

erty 

Solution name Mechanism used Remark 

 

S 
Authentication FortNox [108] 

 
FSL [61] 

Role-based authentication and 

authorization 

Controls authentication policies 

(admission control) 

Open Challenge 

 

T 

Data Integrity OFHIP [95] 

 
Others [72] 

 
 

Isolation [57] 

IPSec encapsulated security pay- 

load (ESP) 

VeriFlow, FortNOX , ensure in- 

tegrity through flow rule legiti- 

macy 

Traffic isolation-based integrity 

Identity management 

systems are lacking 

 

R 

Non- 

Repudiation 

Others [145] 

 
OFHIP [95] 

 
VAVE [141] 

Uses permanent user identities 

(LISP) 

Uses HIP for permanent identi- 

ties 

Source address validation of in- 

coming packets 

 

Open Challenge 

 

I 

Data Confi- 

dentiality 

OF-RHM [67] 

 
FortNOX [108] 

 
IBC [119] 

Random host mutation 

 
Data confidentiality through 

flow rules-legitimacy 

Identity-based cryptography 

No specific security 

systems or applications 

 
D 

Availability DISCO [107] 

 
 

McNettle [133] 

 
 

MAESTRO [99] 

 
Others 

Distribute SDN control plane 

 
 

Extended processing capabilities 

 
 

Parallelism in multi-core proces- 

sors 

Control-data plane functionality 

trade-off and optimal controller 

placement strategies 

Less research  efforts  

to increase availability 

through higher security. 

App. plane and data 

plane availability is still 

a challenge 

 
E 

Access 

trol 

Con- PermOF [136] Impose access control on OF 

apps 

 

Enables security architectures 

for ACL 

Access control policy enforce- 

ment framework 

Enables dynamic access control 

policies 

Access control also 

needed for application 

plane and multiple 

controllers 

   FRESCO [121]  

   
FSL [61] 

 

   
Resonance [97] 

 

 Privacy OF-RHM [119] OpenFlow random host muta- 

tion 

Systematic user privacy 

enforcement mecha- 

nisms are lacking 

 Isolation [57] 

ident++ [96] 

Traffic-isolation-based privacy 

User-selected security proce- 

dures 

 

 Communication 

Security 

TLS [36] Ensure controller-switch com- 

munication security 

Complex Configura- 

tions 
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2.6.5 Recent Studies on DDoS Attacks Detection and Mitigation 

DDoS attacks are catastrophic and can be a major security issue for overall network 

availability. Different approaches to secure network from DDoS have been proposed [91]. 

Handling DDoS attack includes two steps: detection and mitigation. The defence and 

mitigation can operate in a centralised or distributed mode depending on the deploy- 

ment of its modules. Approaches to detection and mitigation may be based on statis- 

tical analysis, policy based (predefined rules), machine learning and data mining or a 

hybrid of the approach. 

A large number of DDoS detection and mitigation methods have been documented 

and categorised in [34], [10], [42]. In [93], the authors proposed an entropy based 

approach to detect DDoS attack. A threshold is set and if entropy is lower than the 

threshold and it persists for five consecutive windows, presence of attack is signified. 

This solution is effective for identifying volumetric traffic but not so appropriate in 

detecting slow rate DDoS attack. Another entropy based detection scheme is pre- 

sented in [135]. This method extends a counter copy of flow entry in OpenFlow table, 

propose a low calculation overload and a level of intelligence at the OpenFlow edge 

switch. In [71], a joint entropy that relies on a statistical model used to detect and mit- 

igate DDoS attack in SDN environment is presented. This method combines nominal, 

preparatory and active mitigation stage to detect and stop DDoS attack. A profile is 

generated in an attack-free period which is used in comparison with attack period to 

detect traffic anomalies and if detected, the controller determines suspicious pair and 

informs the switch to drop attack packets. This method gives high success rate in de- 

termining known and unknown attacks, however, the simulation is performed using a 

single topology and the latency introduced as a result of the multistage approach is not 

quantified. 

A statistical approach to detecting DDoS attack in SDN is also presented in [117]. 

This approach utilises deviation from confidence interval to signify the presence of 

attack using throughput as impact metric. Similarly, analyses of average number of 

connection per user is presented in [31]. The associated traffic values per user are used 

to classify regular and attack traffic. If the statistics counter of IP address is less than 

the minimum number of packets per connection, the traffic is said to be malicious and 

the controller sends a drop rule for the IP address to the switch. 
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In [122], a policy based framework to improve security against DDoS attack is 

implemented by adding two new modules: connection migration (CM) and actuating 

triggers by extension to the OpenFlow data plane. The connection migration module 

adds intelligence to the data plane to monitor sources that will complete the TCP con- 

nection or not. The CM module only authorises useful TCP sessions to be established 

while the actuating trigger is used to activate flow rule under predefined conditions to 

manage network flows without delays. This method is good in addressing TCP SYN 

Flood attack but no other forms of DDoS attack. The intelligence at the data plane also 

introduces a level of delay which is a function of performance trade-off. 

Another policy based scheme is proposed in [134]. The scheme incorporates three 

layered architecture to detect and mitigate attack using two modules: DaMask–D mod- 

ule and DaMask–M module. DaMask-D is an anomaly based attack detection system 

that can be trained in offline and online mode. If an attack is detected, alert is issued 

alongside packet information and forwarded to the DaMask-M module. The DaMask- 

M module match received alert to pre-existing policies of drop, forward or modify 

countermeasure and log result in a database. This policy based scheme introduces 

more communication overhead and increased latency in the network. 

In [74], machine learning approach to detect DDoS attack in early stage is high- 

lighted. Several techniques were suggested for classification of normal traffic from ma- 

licious traffic. These techniques have self-learning ability to adapt to network changes 

and Support Vector Machine (SVM) provides higher accuracy in classification than 

others. In addition, the work in [16] presents the use of Self Organising Map (SOM) 

with 6 tuples of attributes to detect DDoS attack. The proposed lightweight method 

considers median values in training the SOM and shows high rate of true positives and 

low rate of false alarm. The drawback of this method is that false negatives will be 

reported when the attack parameter is set to a low value. 

Hybrid approach has also been used in the detection and mitigation of DDoS.     

In [35], SPHINX is used to detect known and potential attacks on SDN network topol- 

ogy. This model monitors and judges the legitimacy of the infrastructure plane devices 

and ensures only legitimate messages are executed. However, SPHINX introduces 

minimal overheads in the mitigating DDoS attack. 
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2.6.6 Recent Studies Using Sensitivity Analysis for DDoS Attacks 

Detection 

Application of sensitivity analysis to computer networks has become a popular re- 

search topic in recent years, especially in relation to security [25][4]. In [63], the au- 

thors examined using small sample computer models to make decisions and judgement 

in the face of uncertainty for models associated with risk assessment of disposal of ra- 

dioactive waste. The work was further extended in [64] to determine the applicability 

of three widely used techniques to computer models having large uncertainties and 

varying degrees of complexity. Sensitivity analysis has also been applied to address 

computer networks availability in [70]. The authors implement parametric sensitivity 

analysis to compute the effect of changes in the rate of constants of a Markov model on 

system dependability. Authors in [60] present a method for computing network output 

sensitivity with respect to variations in the inputs for multilayer feed-forward artificial 

neural network with different activation functions. 

In terms of security, the authors in [100] performed a sensitivity analysis on DARPA 

intrusion detection datasets and reported that 33 out of 41 features of the network traffic 

characteristics can be removed without causing great harm to the classification accu- 

racy of DDoS attacks and normal network traffic. Similarly, sensitivity analysis has 

been applied to attack pattern discovery in trusted routing scheme [69]. Using packet 

delivery ratio, normalised routing overhead, distrust threshold and trust update inter- 

val as performance metrics in different network conditions, the work carried out in 

[69] revealed that distrust threshold is more sensitive as compared to other metrics in 

optimising the detection rate of schemes employed. The authors in [4] explored the de- 

tection of bots in a compromised machine using dendritic cell algorithm (DCA). Their 

proposed algorithm and sensitivity analysis showed that incorporation of MAC value 

has a significant effect on the detection of bot using DCA algorithm. 

All the works mentioned above highlights the application of sensitivity analysis 

in identifying input parameters that significantly affect system response in designing 

attack detection algorithms. However, our approach differs from the ones mentioned in 

the following aspects. Firstly, the features of interest are extracted from emulated SDN 

environment with normal and DDoS attack traffic. Secondly, the implementation of 

local sensitivity analysis using artificial neural network to identify key network metrics 
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that mainly influence the prediction of whether an SDN is under attack or secure. Full 

details of this approach can be found in Chapter 5. 

 
2.6.7 Overview and Classification of DDoS Attacks 

Availability requires computer systems to function normally without loss of resources 

to valid users at any point in time. DDoS attacks remain one of the most challenging 

issues to availability and constitute a major threat to security problems in today’s in- 

ternet.DDoS attacks can be classified under the availability section of the CIA Triad 

presented in section 2.6.1. This form of attack has been a menace in the network se- 

curity world and the end is still far from sight as it poses high severity risk to the SDN 

planes. A brief overview and taxonomy is presented in the subsection below. 

 
2.6.7.1 Overview of DDoS Attacks 

The objective of a DDoS attack is to bring down the services of a target using dis- 

tributed multiple sources with or without their consent. It’s history dates back to over 

three decades ago. However, the large scale DDoS attack occurred in the nineties 

when a malicious user used Trinoo to disable University’s computer network for more 

than two days [37]. Since the Trinoo attack, the motivation and growing prevalence 

of DDoS attacks show that legacy defence mechanisms are only partially effective. In 

DDoS attack, malicious users focus on tearing down network infrastructure rather than 

gaining access to the end users, this makes it difficult for intrusion detection mech- 

anism in traditional defence mechanism inefficient [43] [14]. DDoS attacks are 

inevitable due to inherent weakness in internet architecture to keep the intermediate 

network as simple as possible to optimise packet forwarding [56]. In addition, suscep- 

tibility to DDoS attack is dependent on the position of security in the rest of the global 

internet [91]. 

 
2.6.7.2 Classification of DDoS Attacks 

A comprehensive taxonomy of DDoS attack based on the degree of automation, ex- 

ploited weaknesses, source address validity and attack rate dynamics has been pre- 

sented in [91]. The distributed nature of a DDoS attack makes it significantly more 
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powerful, harder to identify and block its source. DDoS attacks can be divided into 

five categories based on attacked protocol level as shown in figure 2.6[43]. 
 

Figure 2.6: Classification of DDoS attacks 

 
Network device/host level attack: Attack at this level explore bugs or weaknesses 

in device software or by exhausting the hardware resources. This attack renders the 

target machine unavailable or disables the communication mechanism making the host 

crash, freeze or reboot. This form of attack can be detected due to high volume traffic 

but its mitigation cannot be done at the host level alone. It requires help from an 

intermediate device such as a firewall. Example of this is TCP SYN attack which 

exploits the weakness of the three-way handshake in the TCP connection set-up. A 

server receives an initial SYN request from a client, responds with a SYN/ACK packets 

and waits for the final ACK of the client. A large number of SYN packets are sent 

without acknowledgement while the server is waiting for non-existent ACKs. This 

process results in a server with a full buffer queue that is unable to process legitimate 

connections. 

Operating System level attack: operating system DDoS attacks take advantage of 

the ways protocols are implemented. Example of this is the ping-of-death attack caused 

by malicious user deliberately sending echo requests greater than Internet Protocol (IP) 

standard size. This attack can cause the victim’s machine to crash. 

Application level attack: this attack targets a given application on victim host, thus 

restricting legitimate clients use of that application and possibly tying up resources of 

host machine. Other applications can still be accessed by clients if the host resource is 

not completely consumed. For example, a signature attack on an authentication server 

ties up signature verification authentication, but the affected server will still respond 

to ICMP ECHO and other applications that are independent of authentication services. 

Detection of this form of attack is challenging because other applications on the vic- 
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tim’s host will still operate undisturbed. The attack volume is usually small enough  

to appear abnormal and transmitted malicious packets are virtually indistinguishable 

from legitimate packets. A robust defence system would have to be modelled and 

monitored for each application to account for possible detection against small volume 

attacks. 

Protocol feature attack: attack at this level takes advantage of certain standard 

protocol features. For example, attack launched on domain name system cache on 

name servers. 

Data flood: this attack aims for the victim’s bandwidth. It usually thrives by send- 

ing voluminous traffic to process. Example of this is a UDP flood attack and ICMP 

flood attack. This attack can be detected statistically and can be stopped from edge 

host devices. 

 
2.7 Summary 

In this chapter, SDN architecture and SDN security have been discussed. The dis- 

cussion starts with the technologies that led to SDN followed by the comparison of 

security approach in traditional network and SDN. OpenFlow basics are also part of 

the discussion. A comprehensive review of the SDN architecture and interface coupled 

with SDN development platform is discussed. Security issues and vulnerabilities SDN 

is exposed to is also examined. A brief overview and classification of DDoS attack 

that SDN is prone to is also presented. From the review, it is easier to spot the vul- 

nerability of SDN architecture to DDoS attacks and effort has been made to device a 

means of detecting and mitigating this form of attack to make SDN more secure. The 

next chapter delves into DDoS attack strategy and detection techniques employed to 

identify normal from abnormal traffic. 
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3 
Detecting DDoS attacks in Software 

Defined Networks 

 
3.1 Introduction 

One of the known forms of network attack that threatens SDN architecture is DDoS 

attack. DDoS attack is aimed at consuming available resources of network devices; 

hence, making it impossible to access by legitimate users. Also, it can be launched to 

consume network bandwidth by compromising network traffic. 

The number of successful DDoS attacks launched has seen an increment at an 

alarming rate over the last decade [98]. Shade of attacks seem to be evolving per 

launch and several detection and mitigation techniques are been offered by different 

companies. Although these companies claim to protect enterprise networks, govern- 

ment and other critical sectors, their progress is not as impressive as claimed. This 

setback is due to lack of attack information on the frequency, duration, number of 

agents machines, attempted response, effectiveness and damages suffered as a result 

of the DDoS attack. Figure 3.1. shows the rising scale of DDoS attack in the last 10 

years. It can be seen that DDoS attack magnitude on networks increased in the last 

five years as compared to attack magnitude witnessed in previous years. This attack 

strength may be attributed to exploitation of vulnerabilities found in Internet of Things 

(IoT) devices and continued use of amplification techniques to maximise the scale of 

attack [75]. 

 
Chapter 
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Figure 3.1: Rising scale of DDoS attack experienced in the last 12 years 

[98] 

 
Due to the global view and monitoring of network provided by SDN, anomaly in 

network traffic can be detected in real time and mitigated from a central controller. 

Currently, service providers are in the process of deploying SDN trial versions or in- 

vestigating how this technology can be leveraged on to mitigate DDoS attacks [98]. 

 
3.2 DDoS Attack Detection in Traditional Network 

Since the emergence of DDoS attacks, variety of both attacks and defence mechanism 

is overwhelming. A comprehensive DDoS attack overview and defence mechanism is 

presented in [91]. The authors classify defence mechanism based on activity level and 

by the degree of cooperation. 

The use of dynamic resource allocation can also help in accurately detecting DDoS 

attack [144]. The authors present a dynamic way of utilising reserved cloud resources 

to cloud customers under DDoS attack using queueing theory based model to ensure 

the availability of cloud services to benign users. 

Another popular detection method is the use of machine learning [50]. In [50], 

Radial-basis-function neural network model is proposed. A small number of statistical 

features is employed to describe attack behaviour and classify attack traffic. These 

features implement a passive monitoring system and report high detection rates. Sim- 

ilarly, the authors in [80] propose a clustering based detection method. This method 
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employ entropy value on select attributes and then clustered to recognise the phases of 

attack. 

A detection approach that involves the use of correlation analysis in data centre 

network is presented in [140]. The model predicts flow classes based on the k closest 

training in the feature space and evaluates the influence of correlation analysis. 

 
3.3 DDoS Attack Detection in SDN 

Different techniques have been proposed in the detection of DDoS attack in SDN. In 

[38], flow events are collected from switch interface and a sequential probability ratio 

test which has bounded false positive and false negative error rates threshold is applied 

to make a decision and locate compromised interfaces. 

The use of entropy in identifying anomaly from normal flows have been explored 

in [135][93][89]. Entropy can measure the randomness of benign and malicious traffic 

and good detection accuracy can be obtained using suitable window size and appropri- 

ate threshold. 

Rate limiting has also been applied in DDoS attack detection and mitigation in SDN 

[79] [83]. Rate limiting can shield the network from complete outage during DDoS 

attack. However, all flows are affected in this approach and response time increases 

for legitimate traffic. 

 
3.4 DDoS Attack Strategy 

Numerous DDoS attack methods are being used to degrade the performance or avail- 

ability of targeted network equipment. These attacks can be classified broadly as net- 

work or application level attack. A successful DDoS attack generally follows the fol- 

lowing steps: 

• An attacker scans the network for vulnerable active host. 

• The vulnerable hosts are then compromised for exploitation. 

• Finally, compromised hosts are used to an launch attack on victim. 
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Figure 3.2. Shows a typical DDoS attack strategy. The attack strategy and how it 

affects SDN is presented in the vulnerability section 
 

Figure 3.2: DDoS Attack Strategy 

 

 
3.4.1 Vulnerability  of SDN to DDoS Attack 

Seven threat vectors have been identified in [77]. Three of the identified vectors 

namely:  (1) Attack on control plane communications (2) Attack on vulnerabilities   

in controller and (3) Lack of trust mechanisms to ensure communication between the 

controller and management applications are specific to SDN. Hijacking the communi- 

cation channel between OpenFlow switches and controller could be a potential launch- 

pad for DDoS reflection attack or traffic redirection for malicious gains. 

In the case of a vulnerable controller, the use of common IDS may not be sufficient 

as it may be hard to determine the exact combination of events that trigger abnormal 

traffic behaviour [77]. To further clarify this vulnerability, a DDoS attack process in 

SDN is presented in Figure 3.3. 

In Figure 3.3, the malicious user crafts a packet and send to the victim. In a 

situation where there is no match entry rule in the table of the OpenFlow switch, the 

OpenFlow switch encapsulates the header of the packet and sends a packet in message 

to the controller for instruction. The controller decrypts the packet in message and 
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Figure 3.3: DDoS attack process in SDN 

 
calculate the appropriate route to the destination address based on the installed rule 

(drop, forward packet to port, send) on the controller. Packet out message is generated 

and a new flow rule is installed on the OpenFlow switch table. Then, the OpenFlow 

switch forwards the packet to the destination address. 

It is worthy of note that if a malicious user spoof source IP address and generates 

spurious packet in messages at specified intervals, more packet in messages will be 

sent to the controller making the data and control plane resources vulnerable to flood- 

ing attack depending on attack strategy deployed [35]. Hence, the need to build a 

robust flooding attack detection algorithm in SDN controller. 

Associated risks DDoS attack pose on SDN can be summarised as follows: 

• Network devices at data and control plane buffer capacity is limited 

• DDoS attacks change rate of flow of network traffic dynamically and employ 

multistage attack depending on the nature and strength of the attack 

• DDoS attacks change rate of flow of network traffic dynamically and employ 

multistage attack depending on the nature and strength of the attack 
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• For every new flow, the switch sends packet in message to the controller. As a 

result, DDoS attack can exhaust the communication channel between switch and 

controller. 

• The controller represents the brain of the network and it controls the underlying 

data plane devices by installing flow rules. Hence, single point management 

failure can be attained by compromising the availability of the SDN controller. 

The aim of identifying potential security flaws in SDN is not to project it as a weak 

innovation in network architecture but rather to build a robust security measure around 

the controller to detect and mitigate both known and unknown security breach. 

 
3.5 Types of DDoS Attacks in SDN 

In this section, a brief description of DDoS attacks launched during this simulation is 

presented. 

 
3.5.1 ACK Flood 

A large number of ACK packets, usually not related to open connection is sent to the 

victim server. As a result, available system resources to evaluate legitimate incoming 

packets are exhausted. ACK flood attack can be used as a smokescreen for more ad- 

vanced attacks as the packets usually go through routers, firewalls and other intrusion 

prevention/detection system [117]. 

 
3.5.2 SYN Flood 

SYN flooding attacks exploit known vulnerabilities in a 3-way handshake that begins a 

TCP connection. The goal of SYN flooding is to deplete the backlog of Transmission 

Control Block (TCB) that holds all information about a connection as shown in Figure 

3.4. This is done by sending a large number of SYN request to the server. The server 

replies to the request by sending SYN + ACK packet and waits for the ACK response 

from client. The malicious user does not send ACK packets and the server waits for 

non-existent ACK message. Hence, the buffer queue of the server becomes full and 

incoming valid requests are dropped [117]. 
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Figure 3.4: progression of SYN flood attack 

[110] 
 

3.5.3 Slowloris 

Slowloris attack opens multiple connections to the victim’s web server and keeps them 

open for as long as possible. In this attack, partial HTTP requests are sent and sub- 

sequent headers for each request is sent to keep the connection open, but the requests 

are never completed. Ultimately, the victim’s maximum concurrent connection pool is 

filled and legitimate connection attempts are denied afterwards [117]. 

 
3.6 Experimental Approach 

In this section, a brief description of the experimental setup is presented. And then we 

investigate the feasibility of DDoS detection mechanism by several TCP SYN Flood, 

ACK flood and Slowloris attacks performed. 

 
3.6.1 Experimental Setup 

Mininet software [90] was used to create the tree network topology shown in Fig- 

ure. 3.5. The mininet emulator is an open source network emulator capable of creat- 

ing a realistic virtual network, running real linux kernel, switch, application code and 
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devoted entirely to OpenFlow architecture and SDN implementation. Also, we use 

OpenDaylight [109] controller (Nitrogen) to deliver SDN platform to make network 

adaptive and programmable. For the topology in Figure. 3.5, tree topology is used 

which is created by python API of Mininet. For the two experiments carried out, the 

bandwidths were set to 10MbPS and 100Mbps to represent Ethernet and Fast Ethernet 

connections respectively. These bandwidths were picked to mimic what is obtainable 

in the real day-to-day network activities to analyse and detect DDoS attacks [117]. 
 

Figure 3.5: Network topology 

 

 
3.6.2 System Implementation 

Depending on the nature of the attack, volumetric attacks which exhaust device through- 

put can be detected by monitoring the rate of change of throughput before and during 

the attack to detect presence of an attack.  As shown in Figure. 3.5,  the attacker in  

the SDN environment could be a host or a compromised switch.  In this work, hosts  

in the network have been used to perform attack in SDN. ACK, SYN and Slowloris 

attacks are launched on victim’s server connected to switch 2 in Figure. 3.5 to iden- 

tify their impact on SDN planes. These attacks have been launched independently by 

using conventional attack methods and tools [53]. Table 3.1 provides a summary on 

the description of tools used in implementing these attack. 
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Table 3.1: Simulation parameters description 
 

Simulation Descriptions 
 

Mininet Used for emulating the network topology 

Host machine Intel Core i7, 16G RAM 

Open Daylight Controller Ubuntu server as the base operating system for Open 

Daylight Nitrogen release controller 

Oracle virtual box Virtual environment for simulation 

Other tools 
Pentmenu  for  launching  (Slowloris: using netcat; 

TCP ACK Flood: using hping3 and TCP SYN Flood: 

using hping3) 

iperf tool for monitoring network throughout before 

and during an attack 

 

The same attack was launched for both Ethernet and Fast Ethernet link. The steps 

followed are explained as follows: 

Step 1: Create mininet topology and set bandwidth of 100Mbps for Fast-Ethernet 

link and 10Mbps for Ethernet link 

Sudo mn --controller=remote,ip=192.168.1.4 

 

--topo=tree,depth=2,fanout=3--link tc,bw=10 

 

Step 2: Confirm connectivity between hosts, switches and ODL controller 

 
>net 

 

>pingall 

 

Step 3: Setup Server in the network to listen at a specified port number and interval 

 
iperf {s {p 80 {i1 

 

In the topology, Hosts 1 was used to generate iperf requests from the server and Host 

2 was used as ping probe to monitor packet loss. 

Step 4: Launch attack using Pentmenu 

 
Cd Pentmenu 

./pentmenu select attack and launch 
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Host 3 to host 8 in the tree topology were the compromised hosts made to launch DDoS 

attack traffic on victim’s server at 25%, 50% and 75% attack rate respectively. Once 

the DDoS attack commenced on the victim, the arrival rate of packets at the server 

port becomes higher than the server capacity within a short period. Consequently, the 

server could not respond to burst of open connections from either valid or malicious 

users. Hence a drop in throughput. Table 3.2 shows the parametric values of attack 

traffic launched. 

Table 3.2: Parameter used for simulating the attack traffic 
 

Experiment No Attack ra te Hosts involved TCP SYN-FLOOD ACK-FLOOD Slowloris 

Experiment 1 25% H5, H7  

Experiment 2 

Experiment 3 

50% 

75% 

H5, H6, H7, H8 

H4, H5, H6, H7, H8, 
2.5×105 data-bytes sent 2×105 data-bytes sent 2.5×105 data-bytes sent 

H9 

 

 

3.7 Performance Evaluation 

In this study, an experiment for investigating three different attack rates: 75%, 50% and 

25% was performed on Fast-Ethernet and Ethernet. The severity response due to the 

two media is simulated and presented in Figure. 3.9 and 3.10. Time series data were 

generated, and the observations recorded at a regular interval of 1 second. This process 

was continuous using the same experimental condition, the stream of measurements 

were recorded until the simulation clocks-out at 360 seconds. 

Let  us  suppose  the  series  X   =  {x(t)|1  ≤  t  ≤  360} denotes  the  throughputs 

recorded at equally spaced discrete time interval of 1 second each. We then present 

mathematically the throughputs vector for each of Fast-Ethernet and Ethernet at differ- 

ent attack rates as: 
 

x(t) = (x1(t), x2(t), x3(t), · · · , x360(t)) (3.1) 

However, we are interested to study the efficacy of the attack rates severity for Fast- 

Ethernet and Ethernet. The stream of the simulated throughputs were split into three 

components. Where the first component is 1 minute, which has 6 different levels within 

the possible outcomes of the experimental time. The second and third components are 

2 and 3 minutes, and their levels are 3 and 2 respectively. 
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We established the 95% confidence band (see Table 3.5 and 3.6) [39] to enable us 

make a robust inference on the basis of probability. Taking α = 0.05, to indicate level of 

error tolerance to the experiments. Therefore, we use the method of data condensation 

to study the properties of the throughputs distribution by looking at the mean and 

standard deviation. We deployed Kolmogorov-Smirnov tests [51], at α = 0.05, the 

pvalue = 0.0001 and reject the null hypothesis that the throughputs for Fast-Ethernet 

and Ethernet at different attack rates are normally distributed. Since the throughputs 

are normally distributed at the indicated level of significance. The confidence band for 

detecting attack severity is evaluated in Eqn. 3.2 as follows: 

σ 
x̄(t) ± Zα{√

n 
} (3.2) 

where: x̄(t) denotes mean of the throughputs; Zα(±1.645) denotes the theoretical dis- 

tribution of the throughputs at α level of significance; σ denotes the dispersion of the 

throughputs from the mean and n is the number of instances. 

 

3.8 Normality Test 

To test the data obtained for statistical error, normality test using Doornik Hansen, 

Shapiro Wilk, Lilliefor and JarqueBera is performed. Figure. 3.6 3.7 3.8 presents the 

frequency distribution of the observed FastEthernet values (throughput) against their 

frequency. It can be seen that the distribution of the three scenarios without an attack 

(SYN, ACK and Slowloris) is bell shaped and well modelled by a normal distribution 

[51]. In both frequency distribution for FastEthernet and p-values obtained in Table 

3.3 for ethernet, both data follows a normal distribution. Hence, a justification for 

comparison with attack scenario for skewness. 

Table 3.3: Normality test for Ethernet data without attack 
 

Normal 
Doornik- 

Hansen 

test 

Shapiro- 

Wilk 

Lilliefors 

test 

Jarque- 

Bera test 

TS P-Value Remark TS P-Value Remark TS P-Value Remark TS P-Value Remark 

EACK 24.25 5.41e-006 Normal 0.85 5.04e-018 Normal 0.295 0 Normal 15.17 0.0005 Normal 

ESYN 26.23 2.0048e-006 Normal 0.857 1.139e-017 Normal 0.283 0 Normal 61.27 4.95e-014 Normal 

ESLOW 50.38 1.148e-011 Normal 0.85 9.42e-018 Normal 0.272 0 Normal 101.106 1.109e-022 Normal 
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Figure 3.6: Frequency distribution of Fast-Ethernet Link without ACK attack 

 

Figure 3.7: Frequency distribution of Fast-Ethernet Link without SYN attack 
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Figure 3.8: Frequency distribution of Fast-Ethernet Link without slowloris attack 

 

3.9 Result and Discussions 

Two experiments were completed using the network topology presented in Figure. 3.5. 

In the first experiment, we use bandwidth of 10Mbps for the Ethernet link and Fast- 

Ethernet bandwidth of 100Mbps for the second experiment. In both cases, ACK, SYN 

and slowloris attacks were launched and the data collated. 

 
3.9.1 Effect of DDoS Attack on the Server 

As shown in Figure. 3.9-3.10, the performance of the server appears as a decreasing 

function of the server capacity. FACK represents throughput without attack for a dura- 

tion of 360 seconds while FA75, FS75 and FSL75 represent SYN, ACK and Slowloris 

throughput values at 75% attack rate respectively. The impact of the attack launched by 

compromised hosts 3-8 is observed after 75 seconds of transmission with a bandwidth 

utilisation degradation (a sharp dip as shown in Figure. 3.9. For FA75, A spike can be 

seen at 81seconds indicating a sign of recovery from the attack. However, the server 

was rendered completely unavailable for the rest of the transmission. The observed 

trend is similar for ACK, SYN and slowloris attack launched on the Ethernet network 
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shown in Figure. 3.10. 

The simulation result in Figure. 3.9-3.10 shows that ACK, SYN and Slowloris all 

have a negative effect on the server and is capable of rendering it unavailable within 

minutes of successful attack launch. 

 

Figure 3.9: Effect of DDoS attack on server throughput for Fast-Ethernet 
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Figure 3.10: Effect of DDoS attack on server throughput for Ethernet 

 
3.9.2 Severity of DDoS Attacks on Server 

Figure. 3.11 and Figure. 3.12 shows the visual distribution of traffic data before and 

during the attack. In Figure. 3.11, the 75% attack shows a large variation from the cen- 

tral tendency and quite a number of packets are skewed towards the lower end of the 

range which is similar for the SYN and ACK attack. Similarly, the 50% and 25% attack 

scenarios show mild variation. For the fast Ethernet, the server was made completely 

unavailable in the three attack scenarios. The plot without attack is more condensed 

which means it varies less and more consistent without outliers. Hence, prediction is 

more dependable and shows the severity of the 75%, 50% and 25% attack scenarios. 

In Figure. 3.12, the 75%attack is severe as it is the only one with outliers that made 

the server completely unavailable for the ACK and SYN attack. It can be observed 

that the 25% attack scenario for ACK and SYN had a better upper quartile than 50% 

attack scenario even though they all exhibit variations based on severity for without 

attack scenario. In both cases, the slowloris attack open large connections and com- 
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pletely overwhelmed the server resources, which consequently makes it unavailable. 

The variation in upper quartile shows the severity of attack in the network when 50% 

and 25% is compared with 75% attack rate. 

 

 

Figure 3.11: Severity of Attack on Fast-Ethernet Link 
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Figure 3.12: Severity of Attack on Ethernet Link 

 
3.9.3 DDoS Detection Accuracy 

The increase in detection window affects the prediction accuracy. It can be seen from 

Table 3.4 that increment of 1 minute reduces the prediction accuracy by 46%, 28% 

and 40% respectively for ACK, SYN and slowloris attack. Also, an increase of 2 min 

reduces the accuracy by 60%, 52%, 59% respectively for the Ethernet link. The result 

is significant as it shows that the server’s performance can be brought down in under 

2 minutes as seen in Figure (3.9-3.10) for the modelled attack scenarios and should 

not be ignored. Therefore, a suitable detection window of one minute can help detect 

DDoS attack with 99% accuracy. 

The justification for one minute detection window is not far-fetched. It can be seen 

from Figure. 3.11 and Figure. 3.12 that server capacity degradation occurred in less 

than 2 minutes. Hence a detection window of one minute with high accuracy is suitable 

for detection of DDoS flooding attack in SDN. It can be argued that a detection window 

of 30 seconds or less will be more suitable in detecting DDoS attack. However, this 

will require fast processing capacity and introduce overhead and resource utilisation on 
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the controller or data plane devices. In [93], it has been stated that there is an increase 

in CPU usage with respect to window size. The goal is to reduce overhead as much as 

possible while getting optimum performance from the controller. 

Table 3.4: Detection accuracy for varying window size 
 

Scenarios DDoS Attack 1 min 2 min 3 min 

 TCP-ACK 99.88% 53.84% 35.89% 

Ethernet TCP-SYN 99.96% 71.94% 47.96% 
 Slowloris 99.94% 60.06% 40.66% 
 TCP-ACK 99.51% 60.89% 41.14% 
Fast-Ethernet TCP-SYN 92.93% 53.34% 35.57% 

 Slowloris 98.83% 60.72% 40.40% 

 

 
3.9.4 Effect of DDoS Attack on Mean Throughput using different 

Window Size 

Table 3.5 and 3.6 presents a detailed description of analysed data in detecting attack 

with 95% confidence interval. X75, X50 and X25 represents mean throughputs at 

75%, 50% and 25% respectively. The results in both cases (FastEthernet and Ethernet) 

highlight the fact that the mean throughput drops drastically after every minute in the 

presence of an attack. The result is significant as it shows that an increase in volume of 

attack reduce the value of throughput which in turn have effect on the mean throughput 

for sampled window size 
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Table 3.5: Ethernet simulation table 
 

95% confidence band for ACK X̄75 X̄50 X̄25 

 9556 9564 9566 
 745.6 4189.7 4866 

9565 ± 2.1 (after every 1 minute) 
0.2 2618.3 5241 

0.4 4823.8 5460 

0.6 3600.5 5251 

 1.7 3534.4 5246 

9565 ± 1.9 (after every 2 minutes) 

5151 6877 7216 

0.3 3721.1 5358 

1.5 3567.6 5249 

9565 ± 1.9 (after every 3 minutes) 
3434 5457 6630 

0.9 3986.3 5246 

95% confidence band for SYN X̄75 X̄50 X̄25 

 9564 9565 9527 
 4200 7142 920.1 

9565 ± 2.2 (after every 1 minute) 
0 2194.9 6034 

0.2 728.9 3124.6 

4.6 4567.1 669.3 

 0 5707 7258 

9565 ± 1.5 (after every 2 minutes) 

6882 8353 3723.5 

0.1 1462 4580 

2.3 5137.1 6963.5 

9565 ± 1.8 (after every 3 minutes) 
4588 6300.5 4493.8 

1.6 3668 5683.8 

95% confidence band for Slow-loris X̄75 X̄50 X̄25 

 9564 9564 9565 
 1927.3 2808 4080 

9565 ± 4.5 (after every 1 minute) 
178.5 27.1 15.3 

0 23 9.2 

0 11.5 0 

 937.1 0 0 

9565 ± 3.3 (after every 2 minutes) 

5746 6186 6822.4 

89.3 25 12.3 

468.6 5.8 0 

9565 ± 2.4 (after every 3 minutes) 
3890 4132.9 4553 

312.4 11.5 3.1 
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Table 3.6: Fast-Ethernet simulation table 
 

95% confidence band for ACK X̄75 X̄50 X̄25 

 91228 87603 89633 
 19642.8 1432 2368.2 

91360 ± 321 (after every 1 minute) 
0 0 0 

0 0 0 

0 0 0 

 0 0 0 

90516 ± 528.1 (after every 2 minutes) 

55435.6 44518 46001 

0 0 0 

0 0 0 

89423 ± 401.3 (after every 3 minutes) 
36957.1 29678 30667 

0 0 0 

95% confidence band for SYN X̄75 X̄50 X̄25 

 86413 87705 86353 
 12573 5775 11765.8 

92867 ± 123 (after every 1 minute) 
27.2 0 63 

2224.2 0 0 

0 0.2 0 

 0 0 0 

92561 ± 232.5 (after every 2 minutes) 

49493 46740 49059 

11.3 0 31.5 

0 0.1 0 

92619 ± 160.9 (after every 3 minutes) 
33004.5 46740 32727.4 

741.4 0.1 0 

95% confidence band for Slow-loris X̄75 X̄50 X̄25 

 90440 88240 91118 
 20412.3 27612 37886.2 

91182 ± 324.9 (after every 1 minute) 
62.5 27.7 15.8 

61.6 27.5 18.9 

36.9 7.9 15.9 

 7364 12231 15.7 

90977 ± 305.1 (after every 2 minutes) 

55426 57926 64502.3 

62.1 27.6 17.3 

3701 6119 15.8 

91272 ± 244.8 (after every 3 minutes) 
36971.6 38626.7 43007 

2488 4089 16.8 
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3.10 Machine Learning Approach to DDoS Attack De- 

tection in SDN 

Machine learning is a wide inter-disciplinary area of research which involves learning 

patterns from datasets for computer to perform a specific task without explicit instruc- 

tions. Building a predictive machine learning models has found application in de- 

tecting DDoS attack in SDN. Five machine learning methods were applied to existing 

DARPA dataset with SVM giving the highest detection accuracy and less false positive 

rate [74]. However, the analysis presented is not compared with dataset received from 

emulated software defined network environment. 

An unsupervised artificial neural network, Self-Organising Maps (SOM) has also 

been applied in detecting flooding attack in SDN [16]. Using 6-tuple features to train 

the traffic flow, the proposed method is able to achieve high detection rate and low 

rate of false alarm in less computation (CPU) times as compared to other methods 

involving KDD-99 dataset. 

Application of XGBoost, an extreme gradient boosting algorithm classifier to de- 

tect DDoS can be found in [27]. The result shows better detection accuracy and lower 

false positive rate as compared to three other machine learning algorithms when ap- 

plied in SDN-based cloud. 

Another interesting approach to detecting DDoS attack in SDN is Deep Learning 

[82], [128]. Although some novel machine learning techniques have been applied to 

DDoS detection in SDN, most of them employ the use of KDD and NSL-KDD dataset 

with very few extracting real network dataset from SDN configuration. 

All DDoS detection techniques leverage on identifying key features such as traffic 

flow metrics relevant to identify malicious traffic from benign traffic. Our emulated 

network scenario is simpler and mimics network architecture obtainable in a mid-sized 

enterprise network with focus on three key real-time traffic features obtained from 

emulated SDN architecture in classifying ICMP, UDP and HTTP flooding attacks. 
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3.11 Proposed solution 

In this section, a custom tree topology is built to extract real SDN data. The extracted 

data is fed into machine learning algorithms to classify DDoS attacks using six ma- 

chine learning algorithm. 

 
3.11.1 System Architecture and Setup 

A custom network topology has been designed using Mininet emulator [90] to address 

the problems highlighted earlier. Tree topology is considered because it can be easily 

adopted for wide area network and it offers easy expansion of node. 

The custom topology shown in Figure 3.13 is implemented on 32G RAM Intel 

Xeon E3-1220 processor with Kali Linux as the base operating system. The floodlight 

controller [49] is deployed in the VirtualBox VM running Ubuntu 18.10 LTS while 

Mininet software is deployed on VirtualBox VM running Ubuntu 16.10 LTS. 

The modelled network comprises of 10 OpenFlow switches and 16 hosts which are 

connected using 100Mbps link. The essential software tool includes iperf which is used 

to create a client-server relationship and Low Orbit Ion Canon (LOIC)[22]to generate 

DDoS flooding attack. Using iperf and ping commands to generate legitimate traffic 

between the host and server, system properties such as response time, throughput and 

jitter values generated were recorded per seconds for a duration of 15 minutes. 

In the attack scenario, assumption was made that attack is from internal source. 

Hence, compromised hosts within the network were used to launch HTTP, TCP and 

UDP flood attack on the server for 15 minutes respectively and results recorded from 

the server. 

 
3.11.2 Data Collection 

Machine learning approach for anomaly detection relies on the profile of normal datasets 

and flag deviations from such profile as attack [124]. The effectiveness of any machine 

learning algorithm is based on its performance to identify anomalies. This requires a 

comprehensive dataset that contains normal and abnormal network traffic. As a result 

of this, the need for data integrity and accuracy to build a robust detection system is 

imminent. However, available benchmark DDoS attack dataset poses a challenge in 
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Figure 3.13: Modelled SDN tree architecture 

 
accurately building detection and mitigation algorithm. The KDD99 dataset contains 

a number of redundant records in the dataset, this in turn often lead to bias in detection 

results towards the frequent records in training set [86]. Similarly, there exist multiple 

records which is a factor in changing the nature of the data [87]. 

A new dataset containing modern DDoS attack in SDN was collected and anal- 

ysed to overcome the limitation of existing benchmark datasets such as: (1) lack of 

modern footprint attack fashion in SDN (2) variation in normal traffic recorded with 

less connected devices few years ago and (3) variation in the attack distribution of old 

benchmark testing set and new training set [94]. 

Our collected dataset includes three types of DDoS attack and involves realistic ac- 

tivities of normal traffic that were captured from the server every 15 minutes. The over- 

all data before processing amounts to 1.6 GBytes. Figure 3.14. Shows the data clean- 

ing process employed to arrive at the dataset for classification with a brief overview. 

 
Pre-processing: Network traffic is collected and converted to .txt file 
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Figure 3.14: Data collection and cleaning steps 

 
Feature extraction: We use Knime to extract basic features (response time, jitter, 

and throughput) and remove duplicate records 

Dataset: Data arranged in row and column format with no missing data. 

The identified data integrity challenges form the motivation to create dataset for 

normal and DDoS attack traffic in SDN environment to evaluate its effect and how 

accurate attacks can be predicted and classified using ML algorithm. 

 
3.11.3 Classification methodology 

Machine learning algorithms iteratively learn from data and automates models to find 

hidden insight and predict or identify anomaly without being explicitly programmed. 

The ability to identify deviation in traffic flow makes it suitable for detecting DDoS 

flooding attack. 

There are lots of approaches to machine learning usage in terms of classification 

and prediction. However, the most important is selecting the model that best fits the 

training data. Accuracy of the predictive model is important because it determines the 

quality of resultant predictions and forms the scientific evidence for decision making 

and policy. Six machine learning algorithm (linear and non-linear) is used in this 

experiment and are discussed below: 
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3.11.3.1 Logistic Regression 

Logistic regression (LR) is a form of predictive modelling technique which can be used 

to describe data and explain the statistically significant relationship between dependent 

variable and independent variable. LR is very efficient and does not require too much 

computational resources. 

Rather than using ordinary least square method to fit model and derive coefficients, 

LR coefficients are usually estimated using the maximum likelihood method to itera- 

tively fit the model. Hence, LR has low variance and is less prone to overfitting. LR 

assumes a Gaussian distribution for numeric input variables and is suitable for mod- 

elling binary classification problems. 

 
3.11.3.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a statistical technique for binary and multiclass 

classification with a focus on exploiting the separability among known categories by 

maximising the distance between means and minimising the variation within each cate- 

gory. LDA makes predictions by modelling the distribution of predictors (set of inputs) 

separately in each of the response classes and then use Bayes’ theorem to estimate the 

probability. The class with the highest probability is the output class predicted. 

One of the advantages of LDA is that it has closed form solutions that are easily 

computed and no hyper parameters to tune [142]. 

 
3.11.3.3 K Nearest Neighbour 

K nearest neighbour (KNN) is easy to implement feature similarity supervised learning 

algorithm that can be used for classification and regression analysis. It makes a general 

assumption that similar features exist in close proximity. KNN use distance metric to 

find K similar instances in the training data for new instances and takes the mean 

outcome of the neighbours as prediction [30]. 

The accuracy of KNN prediction relies on selecting the right k value. As K in- 

creases, predictions become stable due to majority voting up to a certain point without 

introducing error. Conversely, as the value of K decreases to 1, predictions become 

unstable. 
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KNN is robust to noisy training data and learns complex model easily [9]. The 

main drawback of KNN is the complexity in searching the nearest neighbours for each 

sample (high computation cost). 

 
3.11.3.4 Naive Bayes 

Nä ıve Bayes calculates the prior probability of each class and the conditional proba- 

bility of each class given each input value. In Bayesian analysis, these probabilities are 

estimated for new data and the final classification is produced by multiplying the prior 

probability with conditional probability [105]. 

Nä ıve Bayes can handle an arbitrary number of independent variables which makes 

it suitable in classifying data with high inputs dimensionality. In analysing real-valued 

continuous data, Gaussian distribution may be assumed to estimate the probability of 

input variables using the Gaussian Probability Density Function (PDF). 

Although Nä ıve Bayes is easy to implement, it suffers from the general assumption 

that predictors are independent which is almost impossible to get in real life cases [26]. 

 
3.11.3.5 Classification and Regression Tree 

Classification and regression tree (CART) is a decision tree algorithm proposed by 

Breiman et al. for predicting continuous dependent variables and categorical predictor 

variables [17]. The models are obtained by recursively partitioning two child nodes, 

beginning with the root node that contains the whole learning sample and fitting a 

simple prediction model within each partition [81]. 

Split points are chosen by evaluating each attribute and value in the training data 

in order to minimise the cost metric. In CART, prediction error is typically measured 

by the squared difference between the observed and predicted values. 

CART gives comprehensive information and all possible solutions based on the 

dataset. However, variations in input data can at times cause large changes in the tree 

or possibly require redrawing the tree. 

 
3.11.3.6 Support Vector Machine 

Support vector machin (SVM) is a supervised machine learning technique for both 

regression and classification tasks. The objective of SVM is to choose hyperplane 
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in an N-dimensional space (where N – represents number of features) that optimally 

differentiate classes with the maximum margin. Hyperplanes are decision boundaries 

that help classify data points. Data points closest to the hyperplanes are called support 

vectors and they influence orientation and positioning of the hyperplane [131]. 

SVM is capable of solving problems with nonlinear decision boundaries and has 

been extended to support multiple classes using different kernel functions such as ra- 

dial basis, Gaussian and polynomial function. SVM can be subject to overfitting if the 

kernel parameters are not carefully tweaked. 

All the discussed machine learning techniques are implemented using Scikit-learn 

platform [106]. 

 
3.12 Result and Discussions 

3.12.1 Evaluation metrics 

To evaluate the performance of the six ML algorithm applied on the obtained dataset, 

we use primary performance indicators such as accuracy, precision and recall values. 

The performance indicators are calculated using four different measures, True Posi- 

tives (TP), True Negative (TN), False Positive (FP) and False Negative (FN): 

• TP: outcome where model correctly predicts positive class 

• TN: outcome where model correctly predicts negative class 

• FP: outcome where model predicts positive class wrongly 

• FN: outcome where model predicts negative class wrongly 

Each ML technique has its unique characteristics to learn, predict and evaluate data 

points to classify and detect attacks based on the applied tuning parameters. 

Accuracy: Accuracy represents the total number of correct predictions divided by 

the total number of cases. It can be represented mathematically as: 

TP + TN 
Accuracy =   

TP + TN + FP + FN 
(3.3) 
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Precision: Precision is the total number of True Positives (TP) divided by total 

number of predicted positives. 
 

 

Precision = 
TP 

TP + FP 
(3.4) 

Recall or sensitivity: Recall is the proportion of correct positive classification (TP) 

from the total number of actual positives. 
 

 

Recall = 
TP 

TP + FN 
(3.5) 

Recall and precision is a more stringent form of how good a classification algorithm 

is. 
 

3.12.2 Experimental results 

3.12.2.1 Attributes correlation matrix 

Correlation between each pair of attributes gives an indication of how related the 

changes between them are. Figure 3.15, shows how changes between throughput, 

jitter and response time are related. It is worth noting that each variable is positively 

correlated with each other as seen in the diagonal line from top left to bottom right. 
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Figure 3.15: Correlation matrix plot of throughput, jitter and response time 

 
3.12.2.2 Prediction accuracy 

To evaluate the complexity of the dataset in terms of accuracy, six ML algorithms 

(LDA, LR, KNN, SVM, NB and CART) are employed. The algorithms are imple- 

mented in Scikit-learn. Using k-fold cross validation, we set values of k = 3 , 5, and 10 

to evaluate the performance of the selected ML algorithms. Figure 3.16 represents the 

comparison between the 3, 5 and 10 fold cross validation. For all the algorithm, 10-fold 

cross validation gave satisfactory accuracy. Hence, we use 10-fold cross validation for 

training and testing our dataset. 

Figure 3.17 shows the box plot comparison of the algorithms. The CART algo- 

rithm achieved the highest accuracy (i.e. 98.47%) followed by KNN with 97.01% and 

the lowest was LDA with an accuracy of 96.07%. 

Overall, the results of the accuracy of these algorithms show that CART can detect 

UDP, TCP and HTTP flood attack from normal (attack free) SDN traffic flow having a 

small number of features with promising accuracy. 
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Figure 3.16: Algorithm prediction accuracy for k = 3, 5 and 10 
 
 

 

Figure 3.17: Box plot comparing algorithm performance 
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3.12.2.3 Precision and Recall 

Relying on only accuracy may not be sufficient in selecting the optimum classifier 

especially for real time DDoS attack data. Hence, the need for precision and recall. 

Figure 3.18 and 3.19 shows the precision and recall comparison of the six ML algo- 

rithms for each class of attack. With the exception of LDA and LR, all other algorithms 

achieved 100% precision in identifying normal traffic. Similarly, all algorithm had per- 

fect precision for UDP flood except NB which is slightly lower. CART also achieve 

high precision and recall rate in classifying other three classes of attack. 

It is worthy of note that all classifiers performed well with high precision and recall 

values. In general, CART produced high accuracy, good precision and recall rate more 

than other classifiers. Hence, a better classifier for detecting flooding DDoS attack in 

SDN with promising performance results. 

 

 

 

Figure 3.18: Performance of classifier in terms of precision 
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Figure 3.19: Performance of classifier in terms of recall 

 

3.13 Summary 

In this section, effect of DDoS attack on SDN is examined. Related work on attack 

detection in both traditional network and SDN is reviewed. Firstly, custom topology is 

designed using mininet and three DDoS(SYN, ACK and slowloris) attack launched on 

the server. A statistical approach is designed to detect attacks and attack window size 

of 1 minute gave more accurate detection accuracy. Similarly, tree topology is designed 

and machine learning based approach is applied to the extracted traffic. The models 

were validated using six machine learning algorithm and CART algorithm achieved 

high detection accuracy of 98.47% with only three features namely: throughput, jit- 

ter and response time when compared to other machine learning algorithm deployed. 

Hence, CART exhibits strong potential DDoS flooding attack detection in SDN envi- 

ronments. 
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4 
Reconnaissance, Attack Launch and 

Mitigation 

 
4.1 Introduction 

In today’s rapidly evolving network, attackers are often one step ahead. A good means 

of classifying security attacks is in terms of passive and active attacks. Passive at- 

tacks attempt to learn or make use of the system without affecting the host resources 

while active attacks alter resources, system operations or shut it down completely in 

severe case. Hence, protection of networks and their services from unauthorised ac- 

cess, destruction, modification and disclosure becomes imminent. Proactive detection 

and prevention mechanisms can help keep activities of malicious users in check. 

 
4.2 Understanding Network Environment 

The battle for a secure network against DDoS attack remains a daunting task to which 

network security specialists must always be at alert. To stay one step ahead of mali- 

cious users, it is necessary to have a good understanding of the network environment. 

Unfortunately, due to financial incentives and readily accessible DDoS attack code 

with stable releases over the years, malicious users are launching variants of DDoS 

attack and exploiting vulnerabilities in networks. As a result, the race seems unending 

and open avenues for innovation in securing networks. Having a good understanding 

 
Chapter 
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of the network environment simplifies the attack process for malicious users. Getting 

to know the environment and launching an attack can be broken down into four steps 

[45]: 

• Information gathering: this stage involves sourcing information publicly avail- 

able using social engineering to gain information about target. The drawback of 

this stage surprisingly is having too little data or too much information to make 

sense out of the exercise. Data gathered in this stage can be IP address, soft- 

ware version, network equipment manufacturer and types of protocol running 

on network devices. This stage is often referred to as footprinting as well. 

• Scanning: scanning involves utilising data obtained from footprinting to locate 

active hosts. The first activity involves port scanning for open ports and potential 

service running on it. Port scanning is then followed by vulnerability scan to 

identify specific weaknesses and services and software of targets. 

• Exploitation: vulnerabilities detected during scanning is exploited to gain access 

to the network where attack is launched. Depending on how vulnerable the net- 

work is, guest account privilege can be escalated here to full administrative right 

to take charge of the network resources. 

• Covering tracks:  Malicious users try to eradicate evidence of gaining access  

to targets. This is done by deleting system log files created during the hacking 

phase to prevent being noticed or detected by intrusion system in the network. In 

some cases, malicious users often plant backdoor in order to gain access without 

going through the initial stages. 

The enumerated steps can be performed using Linux distributions such as Kali Linux 

or Backtrack. In this experiment, Kali Linux is the tool of choice. 

 
4.2.1 Available Attack tools for gathering information 

Several penetration testing procedures can be observed to assess the overall security 

of an organisation’s system and to locate network/system vulnerabilities. Table 4.1 

and 4.2 shows open source web and DDoS attack tools that can be used to gather 

information from network and launch attack [13]. 
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Table 4.1: Open source tools to gather information 
 

Tools Definition 

NMAP Free security scanner showing which hosts are avail- 

able on the network and creates a network map of 

hosts 

BRUTUS Flexible remote password cracker utilities that guess 

passwords by using dictionary and permutations 

thereof 

NESSUS A vulnerability scanner that provides ability to audit 

network, produce a list of vulnerabilities and compli- 

ant security tools 

Google hacking Provides advance operators to query and obtain data 

using ever-widening reach of Google search engine 

Table 4.2: Open source DDoS Attack tools 
 

Tools Definition 

LOIC Open source stress tool to flood server with TCP 

packets or UDP packets to disrupt service 

HULK Open source Web server DDoS attack tool 

Mirai Malware tool to infect IoT devices to launch DDoS 

attack 

Net-Weave Booter written in .NET with USB spreading capabili- 

ties to launch TCP and UDP flood 

 
The lists in Table 4.1 and 4.2 are by no means exhaustive. New tools are being 

developed to scan and secure network on a rolling basis. 

 
4.3 Model Formalisation 

DDoS presents a form of security attack where multiple attacks from different loca- 

tions in the network target a victim. Since DDoS attack exhausts the resources of the 

victim e.g. server, the server refuses new connection from legitimate hosts. It is worth 

stating that the server resource exhaustion could be bandwidth or buffer size of the vic- 

tim server. In our architecture, a single controller manages 10 switches and 16 hosts 

respectively using OpenFlow protocol [127]. 

Let the transfer of information between the switches in the network with respect to 
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link path be represented mathematically as follows: 

 
Tswitch = Ci.[S1L1 + S2L2 + S3L3 + ... + S10L10] (4.1) 

 
where Ci = no of controllers in the network 

assuming equal link i.e. L1 = L2... = L10 eqn (1) becomes 
 

 
 

 
Similarly, 

10 

Tswitch = CiL Si (4.2) 

i=1 
 

 

 

Thost = Ci.[H1J1 + H2J2 + H3J3 + ... + H16J16] (4.3) 
 

where linkJ1 = J2 = 

J16 

 

16 

Thost = CiJ Hi (4.4) 

i=1 

Combining eqn. (4) and (2) gives total flow of information in the network as: 

 
Tnetwork  = Tswitch + Thost (4.5) 

 
10 16 

Tnetwork = CiL 
    

Si + CiJ 
    

Hi (4.6) 

Number of controller in the network = 1, therefore Ci = 1 
 

10 16 

Tnetwork = L  
     

Si + J  
    

Hi (4.7) 

i=1 i=1 

i=1 i=1 
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Table 4.3: model parameters description 
 

Notation Meaning 

Ci 

Hi 

Si 

Li 

Ji 

Tswitch 

Thost 

Tnetwork 

No of controllers in the network 

No of hosts present in the network 

No of switches present in the network 

Link between switches 

link between host 

Transmission of information between switches 

Transmission of information between hosts 

Transmission of information within the network 

 
4.3.1 System Architecture 

The choice of modelling complexity of a network depend on the amount of information 

to be conveyed, the medium of transmission and the depth and width of the interface 

(level of interaction) of the system. Each of these is interrelated in common network 

topologies available today. This also applies to SDN. For this experiment, a Fat-Tree 

topology is designed in mininet [90]. Mininet is an open source network emulator 

devoted entirely to OpenFlow architecture and SDN implementation. It can create a 

realistic virtual network, running a real Linux kernel, open Vswitch and application 

code. Star, torus, linear and other custom topologies can be designed using mininet. 

However, Fat-tree topology is chosen for this experiment as it conforms to practical 

hierarchical core, distribution and access layer recommended network design. Fat- 

tree is one of the most widely-used network topologies. It is a combination of two or 

more star networks connected together with a bus and it supports future extension of 

network. Fat-tree topology is ideal for workstations located in groups. 

 
In Figure. 4.1, the controller is responsible for providing all of the switches with the 

information needed to populate their Ternary Content Addressable Memory (TCAM) 

table. Hence, packet forwarding problems associated with loops would be avoided. 

The SDN controller updates each of the OpenFlow switches in the network using 

OpenFlow protocol with the content of the flow table created by the controller.  As    

a result, the controller has a global view of the network and set of matching instruc- 

tions also referred to as flow can be pushed to OpenFlow switches simultaneously to 
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Figure 4.1: Fat-tree network topology 

 
mitigate attack or enhance system performance. 

Due to the separation of the control and data plane, there exists negligible latency 

in the signalling protocol. By the time the controller collects statistics from OpenFlow 

switch, the values within the message are most likely out of date based on polling in- 

terval and it may not reflect the real-time state of the switch anymore. Fortunately,  

for many applications, this slight inaccuracy is tolerable or negligible. These little but 

negligible delay in statistics collection for use in real-time is as a result of the separa- 

tion of the control plane from the data plane. Although this can be more pronounced 

for a controller that is geographically distant from data plane devices with large link 

latency. This latency will have to be put into consideration for any reactive algorithm 

to be placed in the controller that relies on statistics collection. Figure. 4.2 Shows the 

global view of the network from floodlight controller perspective. 

The custom fat-tree topology consists of 10 OpenFlow switches connected hier- 

archically. At the distribution layer, 4 hosts are connected to each OpenFlow switch 



68 

  4.3 Model Formalisation 
 

 

 

 

 
 

Figure 4.2: Global view of network from controller perspective 

 
making a total of 16 hosts in the network. Each host is tested to ensure connectivity 

using ‘pingall’ command and the connections were successful. 
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4.3.2 Experimental Approach 

The simulation approach is presented in four stages as shown below: 

• Stage 1: Create network topology The network topology shown in Fig. 4.1 is 

designed using mininet emulator and connectivity is established using the fol- 

lowing commands: 

 
Sudo mn --controller=remote,ip=192.168.1.4 

 

--topo=tree,depth=2,fanout=3--link tc,bw=10 

 

>net 

 

>pingall 

 

• Stage 2: Scan the network using NMAP In this stage, information about the 

number of active network devices is gathered. Information such as target IP 

address, open port, device e.t.c. were obtained using intense scan command. 

 
nmap -p 1 65535 -T4 -A -v 10.0.0.1/24 

 

• Stage 3: Launch DDoS attack using LOIC Using one of the hosts to generate 

constant traffic to and from the server, throughput, jitter, and response time val- 

ues were measured per second. LOIC was used to launch TCP and UDP flood- 

ing attack and CPU utilisation from the controller (CPUT) and server (SCPUT) 

recorded before the attack (normal scenario) and during an attack. 

• Stage 4: Mitigate attack In this stage, the controller pushes out reactive block 

flow based on a predefined countermeasure algorithm to mitigate the flooding 

attack. Server (SCPUT mitigation) and controller (CPUT mitigation) utilisation 

values before an attack (without attack) and during an attack (with attack) were 

recorded. Similarly, the jitter values before the attack (UDPB), during an attack 

(UDPD) and mitigation(UDPM) were recorded and discussed in section 4.5 
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4.3.2.1 Hardware and Software Settings 

The specific software and hardware configuration information are provided in Table 

4.4. All experiments were conducted on high performance PC with adequate compu- 

tational capabilities. The computer has 32 GB memory, 4 cores Intel Xeon E1234. 

Kali Linux is installed as the base OS. Oracle VirtualBox is also installed which runs 

Ubuntu 18.04 version for the floodlight controller [49]. Other software utilised in this 

experiment are open source as shown in Table 4.4. 

Table 4.4: Simulation parameters descriptions 
 

Software and hardware Specification 

CPU Intel Xeon CPU E3-1220 V3 @3.10Ghz 

Memory 32G RAM 500Gb HDD 

Kali Linux Kali-rolling 

Oracle virtual box Virtual environment for simulation 

LOIC(Low Orbit Ion Canon) V 1.0.8 

Ubuntu Bionic V18.04.1 LTS 

Mininet Emulator V 2.2.2 

 

 
4.4 Active Reconnaissance, Attack Strategy and Coun- 

termeasure 

In this section, we present the three stage approach followed in gathering information 

from the network, launching an attack on the network and the associated countermea- 

sure taken to mitigate DDoS attack in the network. 

Figure. 4.3 shows the methodology flow diagram used in this model. The attack 

module represents the active reconnaissance stage where specific information about 

the network is gathered. The information gathered at this stage is modified and utilised 

to attack the system. In the controller module, system performance is monitored for 

abnormal behaviour and a routine is called in the controller to dynamically mitigate 

attack and restore the system to working order. 
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Figure 4.3: Methodology flow chart of the reconnaissance and countermeasure 

 
4.4.1 Active Reconnaissance 

Information gathering is an essential step needed to gain access to a network. It in- 

volves knowing which information is useful for launching an attack and how to extract 

it through reconnaissance. One of such information is details of where the targets IP 

address starts and stop. For this experiment, Zenmap [101] is the network mapper run 

to see the number of active hosts on the network and the vulnerability scanner to deter- 

mine the ports open in the network. Zenmap is an open source multi-platform Nmap 

security scanner with a graphical user interface capable of scanning large networks fast 

from a single host. As shown in Figure. (4.4-4.5), it can be observed that there are 16 

active hosts on the network with IP ranging from 10.0.0.1 to 10.0.0.16 and a clue of 

the network topology is also provided. The intense scan performed also revealed open 

port 5566 on the server with 10.0.0.10 IP address. The gathered piece of information 

paved the way for the attack strategy deployed in stage 2. 

 
4.4.2 Attack Strategy 

The known fact about new packets coming to the controller is that the destination 

hosts/server is within or logically connected to the network of the controller. In this 
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Figure 4.4: Zenmap view of network topology 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Nmap output with details of server open port 

experiment, four key assumptions are made: 

• 1. Not every host in the network is the attack target 

• 2. The attack is orchestrated through an internal network 

• 3. During an attack, the volume of attack traffic is much higher than legitimate 

traffic 
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• 4. There is a continuous flow of traffic to the server 

The assumptions are made to represent what is obtainable in the real day-to-day 

network activities and attack scenarios. Depending on the nature of the attack, high 

rate DDoS attacks often have more traffic than legitimate traffic in order to exhaust 

network resources and render it unavailable. As shown in Figure. 4.1, the attacker in 

the SDN environment could be a host or a compromised switch. In this experiment, 

hosts in the network have been used to launch attack on victim’s server connected to 

switch 9. These attacks have been launched using Low Orbit Ion Canon (LOIC) [22]. 

LOIC is an open source DDoS attack application with a GUI responsible for sending 

garbage TCP/UDP or HTTP flood requests directed towards victim’s server on selected 

port. This attack is further intensified by running an application that changes attack 

source IP address within the range of IP address that has been spoofed during the 

active reconnaissance phase. 

 
4.4.3 Countermeasure 

The best way to mitigate any DDoS attack is to prevent the attack from being launched 

in the first place. There exists two main approach to mitigating DDoS attack; pre- 

ventive and reactive approach. Due to the centralisation of the SDN controller, it is 

easy to effectively monitor network health and proactively reacts to anomalies based 

on the detection system in place. The floodlight controller operates reactive rule inser- 

tion by default. The controller monitors packet using packet-in messages and a static 

flow pusher is used to create a flow proactively prior to malicious packets reaching 

the OpenFlow switch. This flow pusher is accessible through the REST API and the 

defined JSON string entry is then added to the controller using an HTTP POST com- 

mand. 
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Algorithm 1 Countermeasure Algorithm 

Procedure Start 

monitor packet in on controller port 6653 

for each Switch in Network do 

collect the network statistics 

Calculate average packet in value @ time t1 = X1 
Calculate average packet in value @ time t2 = X2 
if X2 > X1 
push flow to block attacking switch port 

Print log of rule insertion 

else continue 

end if 

end for 

end procedure 
 

 

4.5 Result and Analysis 

In this section, we present and analyse the results as follows: 

 
4.5.1 Effect of DDoS Attack on System Response time 

Before launching an attack, based on the assumptions stated in section 4.4.2 that there 

exists a continuous flow of traffic to the server. Hence, the need to evaluate the average 

response time of the system before and during an attack. The ICMP error reporting 

protocol consists of echo requests and echo reply to monitor network problems pre- 

venting delivery of IP packets. Round Trip Time (RTT) is the time it takes for a data 

packet to be sent to a destination plus the time it takes for an acknowledgement of that 

packet to be received back at the source. The min response time is the fastest time it 

takes to get a response at the source while the maximum response time represents the 

time that took the most. The average response time is the sum of all the RTT values 

found divided by the total number of RTT samples. Using Ping command, 20 probes 

were sent to the server and the average response time recorded for five scenarios. All 

packets sent were received. Similarly, an attack was launched and the average response 

times during the attack period for 5 scenarios are evaluated as shown in Figure. 4.6 For 

each scenario, the minimum response time before an attack is completely negligible 
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Figure 4.6: Average response time from server before and after attack 

 
compared to minimum response time during an attack. The maximum response time 

before an attack did not exceed 7.9 milliseconds. This trend is completely different for 

attack scenario as it reaches a maximum response time of 28 milliseconds. In all the 

scenarios considered, the response time increased by over 100 percent during attack. 

Thus, it is evident that DDoS attack can severely impact response time of server within 

a short period and can result in packet loss or render the server completely unavailable 

to legitimate users. 

 
4.5.2 Computational Resource Consumption 

Figure 4.7 4.8 4.9 4.10 shows the resource consumption rate before an attack, during 

attack and mitigation. There is no big difference between the controller CPU utilisation 

and server utilisation before the attack. Utilisation fluctuations are around 8% and 60% 

on average respectively. Because of the high number of flow during attack, the CPU 

utilisation quickly reaches a peak of 62% in less than 80 seconds of attack launch 

and reaches 80% for the victim server respectively. During Mitigation, the utilisation 

rose by 20% and 10% above the attack utilisation threshold for controller and server 

respectively. The overall controller utilisation hovers around 8% and 60% for the server 

and controller when completely mitigated. There is a strong correlation between the 

normal controller/server utilisation before attack and during mitigation. Hence, low 

performance overhead introduced as a result of pushing reactive flow to mitigate the 

flooding attack. 
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Figure 4.7: Controller CPU utilisation under TCP-based attack 
 

 

 

Figure 4.8: Server CPU utilisation under TCP-based attack 
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Figure 4.9: Controller CPU utilisation under TCP-based attack 
 

 

 

Figure 4.10: Server CPU utilisation under TCP-based attack 
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4.5.3 Effect of DDoS Attack on Packet Count 

From the above assumptions made that there is a continuous flow of traffic to the server, 

it is evident that rate of packet-in and out at any point in time varies and it is not equal 

to zero. The rate of flow is seen to be increasing exponentially in Figure 4.11 during 

the flooding and spoofing attack. The rate of change of packet-in message is monitored 

for abnormality by the controller and information about the server switch port is kept. 

A large variation in the value of packet-in message triggers the flow-pusher module to 

block the attacking source based on predefined rules. 

 
 

Figure 4.11: Packet count before and during DDoS attack 
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4.5.4 Effect of DDoS Attack on Jitter 

Jitter represents the variation in the delay of received packets. In Figure. 4.12, using a 

buffer size of 208kbytes, the jitter varies between 0.003ms and 0.015ms before attack. 

Spiky delay waveform is seen during attack and mitigation phase. The spikes indicate 

congestion in the network. The congestion window during the flooding attack is large 

and this will lead to packet drops if the congestion time is more than the packet trans- 

mission time. This effect can be severe for a voice application running in SDN during 

attack. 

 
 

Figure 4.12: DDoS attack effect on Jitter 
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4.5.5 Effect of DDoS Attack on Throughput 

Figure. 4.13 shows a significant drop in throughput value due to the impact of flooding 

attack on the server. The average throughput for requests made from hosts within the 

network to the server before the attack is 42 Gbps. TCPB, TCPD and TCPM represent 

throughput before, during and after attack mitigation respectively. The impact of the 

attack is felt barely 55 seconds after the flooding attack launch and the server was 

rendered unavailable for the rest of the transmission. However, when the controller 

pushes block flow to the switch port connected to the attacking host in the data plane, 

the server regained its capacity and the network is restored within a short while. 

 
 

 

Figure 4.13: Effect of DDoS attack on server throughput 
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4.6 Summary 

In this chapter, active and passive information gathering to gain understanding into 

network topology is examined. The network topology is constructed from scanning the 

network and information gathered from the open port is used to launch UDP and TCP 

flooding attack. As a result, the effect of UDP and TCP flood DDoS attack on SDN has 

been demonstrated. This study reveals that existing controller and data plane devices 

are prone to flooding and spoofing attack which degrades network performance within 

a short while. It also indicates that these attacks can be mitigated by pushing blocking 

flows from the controller to the attacking switch. Our evaluation shows that additional 

flow rule insertion to mitigate DDoS flooding attack imposes minimal overhead in 

terms of CPU utilisation on the controller and server. 
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5 
Sensitivity Analysis of Detection 

Parameters 

 
5.1 Introduction 

In the last decade, existing works in the literature and industrial collaboration in the 

subject of SDN implementation indicates that the wide adoption of the technology is 

not far from reach. Realistic models and methodologies for understanding network 

traffic behaviour play an important role in facilitating efficient DDoS attack detection 

and mitigation. Using simulation data to describe dynamic network traffic characteris- 

tic and detect DDoS attacks plays a larger role than traditional mathematical techniques 

have played in the past. Application of machine learning to network traffic characteri- 

sation has made it more realistic to mimic network traffic pattern and develop a robust 

model against security vulnerabilities for multiple reasons. A primary reason is the 

reduction of costly investment in data monitoring tools for day-to-day traffic analysis 

and performance overhead introduced. 

Sensitivity analysis is an ad hoc analysis that relies on historical data. Information 

gathered by network administrators and designers helps in planning and responding to 

threat to input network parameters deemed sensitive. The full global analysis of all 

the historical network parameters gathered to monitor and detect DDoS attack can be 

computationally expensive and it may introduce delay in end-to-end communication if 

implemented on enterprise network. Hence the need to select a subset of parameters 

 
Chapter 
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that seemed likely to have strong effects in the detection of anomaly in network traffic. 

One-at-a-time local sensitivity analysis (LSA) technique analyses the impact of a sin- 

gle parameter on the cost function at a time, keeping the other parameters fixed and is 

fast to compute. 

 
5.2 Sensitivity Analysis 

Anomaly detection techniques in networks rely on the assumption that variations in 

network parameters may have some effect on the state of network performance when 

under attack. Several network features such as time-to-live (TTL), throughput, end- 

to-end delay, packet drops amongst others are considered input variables to assess the 

robustness of detection and to ensure appropriate mitigation technique is deployed. 

This approach is memory-intensive and can increase the computation time coupled 

with the purchase of a high-performance computing device. 

Sensitivity analysis involves the estimation of uncertainty in the output of a model 

as a result of different sources of uncertainty in the input[116]. Figure5.1 illustrates the 

basic representation of the relationship between input parameters and output response. 

 

 

 

 

 

 

Figure 5.1: Sensitivity analysis of relationship between input and output response 

Sensitivity analysis offers an efficient approach to assess extent to which detection 

results are affected by changes in input network variables. In this context, sensitivity 

analysis is aimed at priority setting, to identify the key variables that are major influ- 

ence in predicting whether the network is under attack or secure. As a result, sensitivity 

analysis provides an understanding of cause and effect reaction between changes in in- 

put variables and the corresponding output. 
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One of the key advantages of sensitivity analysis is that it identifies critical vari- 

ables that may be given less consideration when designing a robust detection model. 

 
5.2.1 Types of Sensitivity Analysis 

When one or multiple inputs have relatively insignificant sensitivity as compared to 

others, the overall dimension of the neural network for training can be reduced by re- 

moving them and a smaller size neural network can be successfully retrained to develop 

a more efficient model. 

 
5.2.1.1 Local Sensitivity Analysis 

Local Sensitivity Analysis (LSA) is the assessment of the local impact of input factors’ 

variation on a model response by concentrating on the sensitivity in the vicinity of a 

set of factor values [147] [149]. In local sensitivity analysis, the values of other input 

parameters are kept constant when studying how sensitive an input factor is. 

LSA evaluates sensitivity for a single deterministic set of input parameters which 

is often based on the partial derivatives of the response with respect to the input pa- 

rameters [62] [73]. Given the model F defined as the following system: 

 

y = F(x, γ) (5.1) 

 
The LSA indicates how independent variable x and parameters γ = [γ1, ...,γr] of F 

influence dependent variable y. 

The main concept of LSA is based on computation, after a training process of 

influence of pattern attributes xi, i = 1 ,..., N or model’s parameter γ on the output value 

yj, j= 1,..., N,where N and J denote the number of features and outputs respectively 

[150] [76]. This influence is characterised by real coefficients Sji 

 
∂yj(x(p), x(p), ..., x(p)) 

S
(p) 

=  1 2 N  (5.2) 
j,i ∂xi 

 

Equation 5.2 describes the sensitivity value of the jth neural network output signal on 

the ith attribute of the input vector x, calculated based on the pth training pattern, p = 

1,...,P. 
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LSA approaches can be informative if there is little uncertainty in model input or 

if the inputs act linearly or additively [114] 

 
5.2.1.2 Global Sensitivity Analysis 

Global Sensitivity Analysis (GSA)is the study of how uncertainty in the output of a 

model either numerical or otherwise can be apportioned to different sources of uncer- 

tainty in the model input [113]. 

GSA considers the impact of varying parameters simultaneously and uniformly 

over their full range of possible values [115] [66]. GSA can show the relationship 

between multiple input parameters and cope well with linear and non-linear response 

[84]. Unlike local sensitivity analysis, global sensitivity analysis requires more com- 

putational work and the approach is often probabilistic. 

 
5.3 Artificial Neural Network Application to Sensitiv- 

ity Analysis 

The concept of Artificial Neural Network (ANN) stems from an understanding of how 

neurons in the brain function to model a simple neural network using electrical circuits 

[138]. 

In intrusion detection and prevention system (IDPS), ANN can predict benign traf- 

fic from malicious traffic. Any form of prediction can be improved by learning from 

the data. These improvements and techniques depend on four major factors [112]: 

• What data is to be improved 

• What prior information is available 

• What representation is used for the data 

• What feedback is available to learn from 

 
5.3.1 Neural Network Training Algorithms 

There are many different batch training algorithms that can be used to train a network. 

All have different characteristics and performance in terms of speed, precision and 



86 

  5.3 Artificial Neural Network Application to Sensitivity Analysis 
 

 

 

 

memory requirement. Table 5.1 presents the lists of algorithm and the associated 

advantages and disadvantages. 

Table 5.1: Comparison of Neural Network training algorithm 
 

Algorithm Advantages Disadvantages 

Gradient descent Employs first order algorithm to 

find minimum of a function 

 
 

 

Newton’s method Require fewer steps than gra- 

dient descent to find minimum 

value of loss function. 

Conjugate gradient Faster convergence than gradient 

descent. 

Quasi Newton It is faster than gradient descent 

and conjugate gradient. Hessian 

matrix does not need to be com- 

puted and inverted. 

Levenberg Marquardt Works without computing exact 

Hessian matrix 

 
Performs well with loss func- 

tions which take the sum of 

squared errors. 

 
Error function is minimised, 

while the step size is kept small. 

Require many iterations for 

functions which have long 

narrow valley structures. 

slow convergence. 

Prone to get stuck in local min- 

ima. 

Requires more information for 

evaluation, storage and inversion 

of Hessian Matrix. 

Line minimisation can be com- 

putationally expensive. 

It needs to store and update a 

matrix of size M x M. 

 

Requires a lot of memory when 

computing Jacobian matrix for 

big datasets. 

 
 

 

Figure 5.2 illustrates the memory-speed comparison of neural network training al- 

gorithm. The gradient descent is the slowest training algorithm requiring less memory, 

while Levenberg-Marquardt is the fastest (but it require a lot of computational mem- 

ory). For our experiment, we utilise the Levenberg-Marquardt training algorithm. The 

Levenberg-Marquardt training algorithm is regarded to be one of the most efficient 

training algorithms for ANNs [58]. It works by combining two algorithms (i.e., gra- 

dient descent method and the Gauss–Newton method) and as a result, remedies their 

individual shortcomings [58][143]. Its major drawbacks are the increased computa- 

tional cost due to the need to carry out Hessian matrix inversion calculation each time 
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Figure 5.2: Memory speed comparison of neural network algorithm 

 
for weight updating and the storage of the Jacobian matrix whose size is decided by 

the number of patterns, number of outputs, and the number of weights [143]. 

For large-sized networks and training patterns, even though the Levenberg–Marquardt 

algorithm is very efficient, the computational cost may be too expensive or prohibitive 

to handle the Jacobian matrix storage and the Hessian matrix inversion calculation 

[143]. For our experiment, there are a few thousands of instances (i.e., 3600 in total), 

three input parameters and one output. This can be easily classified as small or medium 

sized problem. Hence, the Levenberg-Marquardt training algorithm is adopted in our 

experiment due to its speed, stable convergence and less memory consumption (in this 

case due to a few parameters). 

 
5.4 Description of Dataset 

Over time, emphasis has been on the development of algorithm to solve problems. 

With the growing generation of big data due to migration to 5G and beyond, internet 

of things (IoT) and cyber-physical processes, it becomes pertinent to develop a means 

for the accurate representation of data before developing an algorithm that fits the data 

[126][124]. 

The dataset for this experiment is generated via the modelled tree topology de- 

scribed in Chapter three (see Figure 3.13) . Four scenarios namely:1. without at- 
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tack(data collected when there was no attack), 2. With TCP flooding attack(data col- 

lected when TCP attack launched), 3. With UDP flooding attack (data collected when 

UDP attack launched) and 4. With HTTP flooding attack (data collected when HTTP 

attack launched) scenario were considered. Each experiment was performed for 15 

minutes and corresponding network traffic was recorded per second. Hence, there are 

900 samples for each scenario to have a total of 3600 data samples. Throughput, jitter 

and response time features were extracted using KNIME to create our dataset. Tables 

5.2 5.3 5.4 5.5 provides the descriptive statistics for the generated data. 
 

Table 5.2: Descriptive statistics of actual simulation data (over 900 data samples) for 

normal scenario 
 

Metric Min Max Average Median Standard Deviation 
 

Tp 95.1000 95.9000 95.6332 95.6000 0.1402 

Rt 0.0320 2.1200 0.2114 0.1980 0.1286 

Jt 0.0040 0.4930 0.2271 0.1940 0.0943 

 

Table 5.3: Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for TCP attack 

scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0 95.9000 0.5441 0.0238 7.0999 

Rt 0.2650 678 302.2676 299 110.6598 

Jt 0.0040 0.4930 0.2271 0.1940 0.0943 

 

Table 5.4: Descriptive statistics of Tp, Rt and Jt (over 900 data samples) for UDP 

attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 95.1000 95.9000 95.6332 95.6000 0.1402 

Rt 0.1980 82.1000 26.3097 24.8000 7.3245 

Jt 9.1610 18.4280 10.5100 10.1725 1.0496 

 
It can be seen from Tables 5.2 5.3 5.4 5.5 that the average throughput during attack 

drops significantly as compared to without attack scenario for TCP and HTTP flooding 
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Table 5.5: Descriptive statistics of Tp, Rt and Jt(over 900 data samples) for HTTP 

attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0 95.9000 0.7429 0 8.3955 

Rt 0.0200 1673 49.1262 23.7000 90.9398 

Jt 0.0040 0.4930 0.2271 0.1940 0.0943 

 
attack. Similarly, the jitter is affected adversely for the UDP attack and without attack 

scenario. In all cases of attack,  there is an increase in response time.  Thus,  it can  

be deduced that each of these features are sensitive. However, the goal is to establish 

which is the most sensitive . 
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5.5 Experimental Approach 

In this section, local sensitivity analysis is carried out to determine the sensitivity of 

throughput, jitter, and response time to DDoS flooding attack. The goal is to determine 

if truly these metrics are sensitive to attack and which one is the most sensitive. Figure 

5.3 shows the methodology flow chart of the 5 stage approach employed in performing 

local sensitivity analysis. 
 

Figure 5.3: LSA methodology flow diagram 

 

• Stage 1: At stage 1, throughput, jitter and response time features are extracted 

and the data is normalised using min-max method. the normalised data is used 

to obtain cost function values which are then fed as input training data into the 

ANN where MSE values are obtained. 
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• Stage 2 - 4: In these stages, additive white Gaussian noise(AWGN) is added 

based on one-at-a-time basis. AWGN is added to throughput(Tp)to have noisy 

Tp  while other factors (Jitter (Jt) and response time (Rt)) were kept constant  

in stage 2. This process is repeated for noisy Jt (Stage 3) and noisy Rt (Stage 

4) while other parameters are kept constant and new cost function values are 

predicted, respectively in each stage(i.e., Stages 2-4). 

• Stage 5: Hypothesis test is carried out at this stage to statistically validate any of 

the inferences made from the deviations. 

 
5.5.1 Data Normalisation 

The data were normalised such that each system parameter contributes similar relative 

numerical weight in order to minimise data redundancy and ensure all target input val- 

ues have an agreeable metric scale. The data normalisation process employs min-max 

normalisation method. Min-Max normalisation is a strategy which linearly transforms 

variable !X! so that the entire range of values of X from minimum to maximum varies 

between 0 and 1. It can be expressed mathematically as: 
 

X =
 X − Xmin  (5.3) 

normalised 
Xmax − Xmin 

Where Xmin and Xmax are the minimum and maximum values in X respectively. Ta- 

bles 5.6 5.7 5.8 5.9 shows the descriptive statistics of the normalised values for tables 

presented in section5.4 

Table 5.6: Descriptive statistics of normalised Tp, Rt and Jt(over 900 data samples) 

for without attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0.9917 1 0.9972 0.9969 0.0015 

Rt 7.1728e-06 0.0013 1.1440e-04 1.0640e-04 7.6849e-05 

Jt 0 0.0265 0.0121 0.0103 0.0051 
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Table 5.7: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples) 

for TCP attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0 1 0.0057 2.4818e-04 0.0740 

Rt 1.4645e-04 0.4053 0.1807 0.1787 0.0661 

Jt 0 0.0265 0.0121 0.0103 0.0051 

Table 5.8: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples) 

for UDP attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0.9917 1 0.9972 0.9969 0.0015 

Rt 1.0640e-04 0.0491 0.0157 0.0148 0.0044 

Jt 0.4970 1 0.5702 0.5519 0.0570 

Table 5.9: Descriptive statistics of normalised Tp, Rt and Jt (over 900 data samples) 

for HTTP attack scenario 
 

Metric Min Max Average Median Standard Deviation 

Tp 0 1 0.0077 0 0.0875 

Rt 0 1 0.0294 0.0142 0.0544 

Jt 0 0.0265 0.0121 0.0103 0.0051 

 
5.5.2 Cost function value evaluation 

We use the normalised data in section 5.5.1 to build Input-Output correspondence and 

the normalised values are scaled to the following four scenarios: 

• Scenario 1: a scale of 1 is assigned to represent without attack 

• Scenario 2: a scale of 2 is assigned to represent with TCP attack 

• Scenario 3: a scale of 3 is assigned to represent with UDP attack 

• Scenario 4: a scale of 4 is assigned to represent with HTTP attack 

in order to reflect scenario-specific targets from their corresponding values, a math- 

ematical cost function in terms of throughput, jitter and response time is introduced. 

The proposed cost function tends toward unity for the worst case scenario (SDN under 
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severe attack) and approaches zero for the best case scenario (SDN without attack). 

The cost function can be represented mathematically by: 

CF = (abs(Tp − Jt) ∗ Rt) ∗ Lw (5.4) 

where CF represents cost function, Tp = Throughput, Jt = Jitter , Rt = Response 

time and Lw = Weight or Scale. 

For the best case scenario (i.e.,normal SDN state), the throughput is maximum, 

response time is minimum and jitter is minimum. Therefore, Tp approaches 1, Jt and 

Rt approach zero after normalisation. So, we have the following condition for the best 

case scenario. 

 

 
Bestcase = 

Tp →1 

Jt  → 0 

Rt → 0 

 
 

(5.5) 

 

Similarly, for the worst case scenario (i.e., SDN under severe attack), the through- 

put is minimum, response time is maximum and jitter is maximum. Therefore, Tp 

approaches 0, Jt and Rt approach 1 after normalisation. Hence, we have the following 

condition for the worst case scenario. 

 

 
Worstcase = 

Tp →0 

Jt  → 1 

Rt → 1 

 
 

(5.6) 

 

Substituting the values in equations 5.5 and 5.6 into equation 5.4 , CF approaches 

null (zero) for normal network state and approaches unity (one) when the SDN is under 

attack. A descriptive statistics of the cost function value over 3600 samples for normal, 

UDP, TCP, and HTTP flooding attack scenarios is presented in Table5.10. 

As shown in Figure 5.4, the cost function value(CF ) associated with normal (with- 

out attack) network traffic hovers around zero. This value satisfies the condition for 

our best case scenario. The other attack scenario has cost function value well above 

zero with peak values of 0.78 and 0.63 recorded for HTTP and UDP flood traffic re- 

spectively. 
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Table 5.10: Descriptive Statistics of the Cost function value (over 3600 data samples) 

for normal, TCP, UDP and HTTP attack scenarios 
 

Metric Min Max Average Median Standard Deviation 

Normal 7.0837e-05 0.0124 0.0011 0.0010 7.5756e-04 

TCP 0 0.1528 0.0435 0.0382 0.0251 

UDP 0.0014 0.6656 0.2018 0.1968 0.0654 

HTTP 0 0.7728 0.0147 0.0065 0.0336 

 

 

Figure 5.4: Variation in cost function value versus attack 

 
The cost function value(CF ) simply indicates that the system parameters experi- 

ence changes due to attacks. To ascertain the most sensitive of these parameters due to 

attacks, local sensitivity analysis is carried out. 
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 1 

 
 

5.5.3 AWGN and MSE 

Additive White Gaussian Noise (AWGN) is a statistical noise with a Probability Den- 

sity Function equal to that of standard normal distribution. AWGN is characterised 

with bell shaped curve as shown in Figure 5.5 with mean value of zero, standard de- 

viation value of 1 and total area under the curve is 1. For the local sensitivity analysis, 

 

Figure 5.5: AWGN distribution 

 
AWGN is added to throughput, jitter and response time as shown in stages 2 - 4 of the 

LSA methodology flow chart(see figure 5.3). Mean Squared Error(MSE) values over 

50 run is obtained afterwards. MSE measures the average squared difference between 

the predicted values and the actual value. MSE is expressed mathematically as: 
 

 

 

5.5.4 ANN training 

n 

MSE = (yi 
n 

i=1 

− y ī)2 (5.7) 

 

A prediction model is built using ANN with the normalised value discussed in Section 

5.5.1 as input and the cost function values described in Table5.10 as the target values. 
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The ANN model is trained with the three inputs metrics (i.e., Tp, Rt and Jt), 10 hid- 

den layers and a single output (i.e.,CF )under 9 iterations as shown in Figure 5.7. The 

best validation performance is at epoch 3 (see Figure 5.6). The number of processing 

elements per layer, as well as the number of layers greatly influence the training pro- 

cess. Too few processing elements can slow down the learning process and too many 

can lead to overfitting of the training dataset [7][6]. For our experiment, 2520 data 

samples (70% of the total data samples) have been used as the training data set, 540 

data samples (15% of the total data samples) have been used as the validation data set 

and 540 data samples (15% of the total data samples) have been used as the test data 

set according to the data portioning approach recommended in several works [19][28]. 

Figure 5.6 shows that the ANN model is correct and acceptably accurate. 

 

Figure 5.6: A typical plot of MSE vs number of Epochs 
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Figure 5.7: ANN training model 

 

5.6 Result and Discussions 

The sensitivity of throughput, jitter and response time is evaluated using deviation of 

newly predicted target value from actual target values obtained and the mean squared 

error value of the prediction model. Tables 5.11 5.13 5.12 show the impact of adding 

AWGN to our impact metrics. For the 50 independent statistical runs to validate the 

statistical significance of this experiment, it can be seen that jitters standard devia- 

tion value is considerably more than what is obtainable in the Tp noisy and Rt noisy 

respectively (See the appendices for the complete tables). 
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Table 5.11: Local sensitivity analysis for noisy Tp, normalised Rt, normalised Jt (over 

3600 data samples) for 50 statistical runs 
 

No of runs Min Max Average Median Standard Deviation 

1 -0.2907 0.6820 -0.0230 -0.0632 0.0905 

2 -0.1138 0.6911 0.0090 -0.0281 0.0908 

3 -0.0876 0.7104 0.0102 -0.0265 0.0915 

4 -0.5090 0.6848 -0.0166 -0.0583 0.0900 

5 -0.1144 0.6929 -0.0195 -0.0619 0.0895 

. . . . . . 

. . . . . . 

. . . . . . 

45 -0.1828 0.7074 0.0107 -0.0279 0.0902 

46 -0.1252 0.7173 -0.0016 -0.0435 0.0897 

47 -0.1248 0.7038 -0.0100 -0.0521 0.0897 

48 -0.1589 0.7035 0.0113 -0.0242 0.0917 

49 -0.2439 0.6930 -0.0182 -0.0603 0.0894 

50 -0.0753 0.7132 0.0036 -0.0390 0.0893 

Table 5.12: Local sensitivity analysis for noisy Rt, normalised Jt, normalised Tp (over 

3600 data samples) for 50 statistical runs 
 

No of runs Min Max Average Median Standard Deviation 

1 -0.1461 0.6995 -0.0017 -0.0445 0.0898 

2 -0.0896 0.6993 -0.0107 -0.0528 0.0895 

3 -0.0943 0.7007 -0.0090 -0.0513 0.0893 

4 -0.5218 0.6938 -0.0113 -0.0531 0.0899 

5 -0.1139 0.6994 -0.0083 -0.0499 0.0893 

. . . . . . 

. . . . . . 

. . . . . . 

45 -0.1440 0.6934 -0.0107 -0.0521 0.0893 

46 -0.1094 0.6955 -0.0108 -0.0519 0.0893 

47 -0.0889 0.6941 -0.0102 -0.0514 0.0892 

48 -0.2157 0.6997 -0.0091 -0.0500 0.0895 

49 -0.2500 0.7009 -0.0100 -0.0521 0.0895 

50 -0.0836 0.6922 -0.0093 -0.0511 0.0894 
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Table 5.13: Local sensitivity analysis for noisy Jt, normalised Rt, normalised Tp (over 

3600 data samples) for 50 statistical runs 

 

 

 

No of runs Min Max Average Median Standard Deviation 

1 -0.2783 0.6505 -0.0323 -0.0518 0.1307 

2 -0.4036 0.7082 -0.0770 -0.0655 0.1249 

3 -0.3362 0.6227 -0.0239 -0.0536 0.0962 

4 -0.5330 0.7538 0.0612 0.0708 0.1207 

5 -0.1335 0.7024 -0.0008 -0.0401 0.0900 

. . . . . . 

. . . . . . 

. . . . . . 

45 -0.2275 0.6672 -0.0260 -0.0657 0.0912 

46 -0.2108 0.7184 -0.0326 -0.0568 0.0963 

47 -0.2364 0.6950 -0.0108 -0.0379 0.0957 

48 -0.4165 0.7079 0.0191 -0.0179 0.0912 

49 -0.1906 0.7496 0.0007 -0.0350 0.0922 

50 -0.0896 0.7296 0.0247 -0.0012 0.0998 

 

5.6.1 Hypothesis test 

Wilcoxon test [139] is carried out over 50 runs when Jt, Tp, and Rt are noisy and 

when they are not noisy. Since the sample size is sufficiently large (that is, 50 in this 

case), a z-statistic can be used to approximate the probability value (p-value) of the test 

[52]. This is why Wilcoxon test [139] is an appropriate test for statistical significance 

in this case. The Wilcoxon test is a non-parametric test that obeys the central limit 

theorem. It tests the null hypothesis that the normalised data and its noisy version are 

from continuous distributions with equal medians. A common significance level of 

0.05 (i.e., 5%) is selected. If the resultant p-value is equal to or less than 0.05, then, 

there is strong evidence against the null hypothesis. The p-value obtained from the 

Wilcoxon test is shown in table 5.14. From table 5.14, it can be seen that the null 

hypothesis is rejected for all cases. This indicates that noisy Jt, Tp, and Rt are all 

statistically sensitive. 

• S1: normalised Tp, normalised Rt, normalised Jt 

• S2: noisy Tp, normalised Rt, normalised Jt 
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Table 5.14: Descriptive Statistics of the MSE Values Over 50 Statistical Runs 

 

 

 
 

Metric Min Max Average Median Standard Deviation p-value 
 

S1 0.00797 0.00826 0.0080 0.00803 0.000047 N/A 

S2 0.00797 0.01145 0.0084 0.00824 0.000634 2.4225e-09 

S3 0.00797 0.00843 0.0081 0.00807 0.000066 1.7330e-17 

S4 0.00799 0.02951 0.0115 0.02951 0.004858 1.7330e-17 

 
• S3: noisy Rt, normalised Jt, normalised Tp 

• S4: noisy Jt, normalised Rt, normalised Tp 

A plot of MSE values against the number of runs is shown in Figure 5.8. Using 

ranksum, the result shows that jitter is the most sensitive to flooding attack followed 

by throughput and then response time. The work presented in [85] also shows that 

delay jitter may severely degrade systems performance. It is worthy of note that all 

parameters evaluated are sensitive to DDoS attack. Hence, adequate prevention and 

mitigation schemes can be deployed in SDN controller if these features are embedded 

in the attack detection scheme. 
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Figure 5.8: Sensitivity analysis of throughput (Tp), jitter (Jt) and response time(Rt) 

 

5.7 Summary 

In this chapter, LSA is implemented on real SDN traffic to identify the key metrics 

that mainly influence the prediction of whether an SDN is under attack or secure. 

The SDN traffic dataset considered are throughput, response time and jitter, and they 

are generated from a modelled tree topology in Mininet. The SDN is subjected to a 

DDoS flooding attack launched using LOIC. An ANN prediction model is built using 

a min-max feature scaling to derive actual target values from the normalised input 

parameters. The sensitivity of throughput, jitter and response time is then evaluated 

using the deviations of newly predicted target values from actual target values when 

an AWGN is added to the respective SDN traffic dataset. Results obtained show that 

throughput, jitter and response time are all statistically sensitive to a DDoS flooding 

attack on the SDN, and jitter is the most sensitive of all the impact metrics considered. 
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6 
Conclusions and Future Work 

 
This chapter presents the conclusion of this thesis and recommends future research 

direction in detecting and mitigating DDoS attacks in SDN. 

 
6.1 Conclusion 

Networks have become absolutely essential element in the way we do things. It pro- 

vides vital communication links that organisations require to run their application and 

be competitive. Due to an increase in demand for high data rate and real time appli- 

cations, the networking industry is faced with the challenge of constantly redesigning 

already complex, vendor-specific equipment with little or no flexibility and interoper- 

ability. 

SDN is an open technology which promises more innovation, flexible and effective 

solutions. Although SDN on the surface provides a simple framework for network 

programmability and monitoring, SDN security is such an important aspect of network 

and the impact of a security breach cannot be overemphasised. While research into 

network security has proceeded at a pace in the scientific and mathematical world, its 

applications and practicality simply haven’t kept pace. 

In this thesis, design and analysis of anomaly detection and mitigation schemes in 

SDN is conducted. The main goal is to establish, if any, the impact of DDoS attack on 

SDN, and experimentally assess attack detection techniques using statistical and ma- 

chine learning approach. Furthermore, we examine DDoS attack mitigation technique 

 
Chapter 
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using reactive flow rule pushed out through the controller and finally, perform sensitiv- 

ity analysis on the impact metrics (throughput, jitter and response time) to determine 

which parameter is more sensitive to attack. 

The simulation results show that DDoS flooding attack on SDN network can de- 

grade network performance. At first, network throughput is polled within an interval 

to determine the normal distribution of network data without attack and Confidence 

Interval (CI) for the normal distribution is obtained. An attack is indicated by a signif- 

icant deviation in mean throughput value obtained at subsequent interval compared to 

the without attack mean throughput. The calculation of confidence interval and mean 

throughput has low overhead and can be easily implemented in the SDN controller to 

detect an anomaly. Our evaluation shows that, by leveraging on the throughput infor- 

mation from the network server, DDoS attack can be easily detected in real time with 

an accuracy of approximately 99% when polled at an interval of 60 seconds. In addi- 

tion, we implement machine learning algorithms to detect DDoS attack. The models 

were validated using six machine learning algorithm (LR, LDA, KNN, SVM, NB and 

CART) on emulated network and real SDN dataset containing HTTP flood, TCP flood 

and UDP flood. CART algorithm achieved a high detection accuracy of 98.47% with 

only three features namely: throughput, jitter, and response times when compared to 

other machine learning algorithm deployed. Hence, CART exhibits strong potential 

DDoS flooding attack detection in SDN environments. 

Similarly, we demonstrate the effect of UDP and TCP flood DDoS attack on SDN. 

This study reveals that existing controller and data plane devices are prone to flood- 

ing and spoofing attack which degrades network performance within a short while. It 

also indicates that these attacks can be mitigated by pushing blocking flows from the 

controller to the attacking switch. Our evaluation shows that additional flow rule in- 

sertion to mitigate DDoS flooding attack imposes minimal overhead in terms of CPU 

utilisation on the controller and server. 

Finally, we perform sensitivity analysis to determine which of the metrics (jitter, 

throughput and response time) is more sensitive to distortion by introducing white 

Gaussian noise and evaluating the local sensitivity using feedforward artificial neural 

network. All metrics are sensitive in detecting DDoS attack. However, jitter appears 

to be the most sensitive to attack. 

For a DDoS attack with more active agents, the attack can be more severe. Hence, 
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the need for a robust resilient SDN security architecture. While the evaluation of the 

impact of DDoS attack on SDNs remains a very rigorous endeavour, the work carried 

out in this thesis offers a primer to the objective evaluation of DDoS attack on SDNs. 

 
6.2 Future Work 

The following are the possible extensions of this thesis which include recommenda- 

tions for future research directions in SDN security: 

• Self healing: Due to global view advantage of SDN controller, the network 

downtime can be minimised by timely fault log. The beauty of network self- 

healing is that service downtime and other network related issues can be resolved 

immediately without network administrators having to get involved. SDN en- 

abled self healing network will involve less network administrator, hence, cost 

savings for organisations and improved customer satisfaction. Some research on 

self-healing network with respect to SDN can be seen in [130] [103] [59]. 

• Load balancing: Load balancing address resource allocation and guarantees 

that available resources are utilised efficiently. During DDoS attack, overloaded 

link can be bypassed by finding out less utilised routes and balancing the traffic 

across it [11]. Some research on load balancing can be found in [1] [148]. 

• Integration to cloud: cloud computing technology has made networking re- 

sources on demand and it offers services on a pay-as-you-go basis [125]. lever- 

aging on SDN enabled cloud services and security will offer elastic services to 

customers with high availability and networking resources in the cloud can be 

handled effectively by the SDN controller [8] 

• Global Sensitivity Analysis: As stated in the final chapter, local sensitivity anal- 

ysis was carried out to determine how sensitive each input parameters are to dis- 

tortion caused by white Gaussian noise. It would be interesting to see how GSA 

will handle multiple input parameters simultaneously and show the relationship 

between these parameters. 
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A 
Results of Local sensitivity analysis of Tp 

noisy, Jt noisy and Rt noisy for 50 runs 

 
Appendix 



Table A.1: Local sensitivity analysis for Tp noisy, normalised Rt, normalised Jt (over 

3600 data samples) for 50 statistical runs 

No of runs Min Max Average Median Standard Deviation 

1 -0.2907 0.6820 -0.0230 -0.0632 0.0905 

122 

 

 

2 -0.1138 0.6911 0.0090 -0.0281 0.0908 

3 -0.0876 0.7104 0.0102 -0.0265 0.0915 

4 -0.5090 0.6848 -0.0166 -0.0583 0.0900 

5 -0.1144 0.6929 -0.0195 -0.0619 0.0895 

6 -0.1281 0.7314 -0.0024 -0.0315 0.0942 

7 -0.1177 0.6969 -0.0114 -0.0529 0.0895 

8 -0.1248 0.6730 -0.0141 -0.0516 0.0910 

9 -0.1677 0.7188 -0.0065 -0.0457 0.0909 

10 -0.2079 0.6964 -0.0054 -0.0469 0.0893 

11 -0.1413 0.7068 -0.0036 -0.0449 0.0895 

12 -0.1582 0.6808 -0.0221 -0.0578 0.0908 

13 -0.0767 0.7080 0.0012 -0.0400 0.0897 

14 -0.0764 0.7064 -0.0014 -0.0427 0.0893 

15 -0.1062 0.7064 0.0001 -0.0420 0.0901 

16 -0.2337 0.6871 -0.0126 -0.0543 0.0896 

17 -0.1832 0.6967 -0.0237 -0.0620 0.0923 

18 -0.1964 0.6935 -0.0072 -0.0483 0.0894 

19 -0.2736 0.7796 0.0292 -0.0042 0.0950 

20 -0.1658 0.6703 0.0019 -0.0355 0.0913 

21 -0.1491 0.7115 -0.0012 -0.0438 0.0896 

22 -0.1402 0.6364 -0.0170 -0.0478 0.0935 

23 -0.1023 0.7022 0.0012 -0.0391 0.0901 

24 -0.1567 0.7126 -0.0123 -0.0535 0.0894 

25 -0.1739 0.6962 -0.0088 -0.0496 0.0893 

26 -0.1628 0.6986 -0.0062 -0.0478 0.0892 

27 -0.0838 0.7068 0.0095 -0.0278 0.0907 

28 -0.0949 0.7559 0.0092 -0.0290 0.0903 

29 -0.1309 0.7172 -0.0091 -0.0451 0.0916 

30 -0.1619 0.7354 -0.0079 -0.0392 0.0942 

31 -0.3041 0.7020 0.0162 -0.0231 0.1006 

32 -0.0808 0.6946 -0.0086 -0.0499 0.0895 

33 -0.0943 0.7100 0.0005 -0.0411 0.0898 

34 -0.5080 0.6945 -0.0121 -0.0549 0.0903 

35 -0.2063 0.6948 -0.0107 -0.0527 0.0895 

36 -0.1662 0.7003 -0.0161 -0.0581 0.0900 

37 -0.9084 0.7033 -0.0169 -0.0585 0.0912 

38 -0.1037 0.7497 0.0053 -0.0349 0.0903 

39 -0.2242 0.7425 -0.0207 -0.0351 0.1050 

40 -0.1298 0.7061 -0.0028 -0.0450 0.0896 

41 -0.1020 0.7055 -0.0071 -0.0482 0.0902 

42 -0.1680 0.6896 0.0004 -0.0371 0.0903 

43 -0.1595 0.6956 -0.0042 -0.0474 0.0894 

44 -0.1175 0.6898 -0.0100 -0.0505 0.0908 

45 -0.1828 0.7074 0.0107 -0.0279 0.0902 

46 -0.1252 0.7173 -0.0016 -0.0435 0.0897 

47 -0.1248 0.7038 -0.0100 -0.0521 0.0897 

48 -0.1589 0.7035 0.0113 -0.0242 0.0917 

49 -0.2439 0.6930 -0.0182 -0.0603 0.0894 

50 -0.0753 0.7132 0.0036 -0.0390 0.0893 
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Table A.2: Local sensitivity analysis for Rt noisy, normalised Jt, normalised Tp (over 

3600 data samples) for 50 statistical runs 

No of runs Min Max Average Median Standard Deviation 

1 -0.1461 0.6995 -0.0017 -0.0445 0.0898 

 

 

2 -0.0896 0.6993 -0.0107 -0.0528 0.0895 

3 -0.0943 0.7007 -0.0090 -0.0513 0.0893 

4 -0.5218 0.6938 -0.0113 -0.0531 0.0899 

5 -0.1139 0.6994 -0.0083 -0.0499 0.0893 

6 -0.0945 0.6979 -0.0071 -0.0487 0.0892 

7 -0.0981 0.6940 -0.0096 -0.0507 0.0892 

8 -0.1146 0.6971 -0.0098 -0.0506 0.0892 

9 -0.1631 0.6996 -0.0095 -0.0512 0.0893 

10 -0.1984 0.7058 -0.0057 -0.0466 0.0894 

11 -0.1032 0.6975 -0.0080 -0.0494 0.0894 

12 -0.1517 0.7066 -0.0099 -0.0519 0.0895 

13 -0.0881 0.6998 -0.0084 -0.0498 0.0893 

14 -0.0793 0.6946 -0.0093 -0.0503 0.0893 

15 -0.1021 0.6980 -0.0090 -0.0505 0.0894 

16 -0.2043 0.7023 -0.0098 -0.0506 0.0893 

17 -0.1486 0.7044 -0.0007 -0.0415 0.0898 

18 -0.1946 0.6948 -0.0096 -0.0503 0.0893 

19 -0.1317 0.6960 -0.0104 -0.0519 0.0895 

20 -0.1294 0.6967 -0.0050 -0.0461 0.0893 

21 -0.1607 0.7009 -0.0087 -0.0499 0.0893 

22 -0.0946 0.6924 -0.0101 -0.0515 0.0892 

23 -0.1305 0.7038 -0.0056 -0.0483 0.0897 

24 -0.1373 0.7020 -0.0080 -0.0496 0.0894 

25 -0.1825 0.6964 -0.0092 -0.0506 0.0896 

26 -0.1729 0.6990 -0.0078 -0.0491 0.0893 

27 -0.0916 0.7021 -0.0081 -0.0496 0.0893 

28 -0.1033 0.7043 -0.0096 -0.0514 0.0895 

29 -0.1202 0.7047 -0.0118 -0.0539 0.0897 

30 -0.1071 0.7102 -0.0088 -0.0505 0.0895 

31 -0.2968 0.6928 -0.0096 -0.0504 0.0895 

32 -0.0793 0.6947 -0.0088 -0.0496 0.0893 

33 -0.0814 0.6985 -0.0099 -0.0512 0.0892 

34 -0.5114 0.6970 -0.0102 -0.0509 0.0896 

35 -0.1939 0.6960 -0.0112 -0.0525 0.0894 

36 -0.1635 0.7019 -0.0101 -0.0509 0.0896 

37 -0.7064 0.6965 -0.0091 -0.0505 0.0900 

38 -0.1086 0.7015 -0.0082 -0.0487 0.0897 

39 -0.1278 0.7052 -0.0159 -0.0573 0.0905 

40 -0.1604 0.6974 -0.0096 -0.0506 0.0893 

41 -0.1781 0.7041 -0.0084 -0.0500 0.0895 

42 -0.0909 0.6905 -0.0082 -0.0499 0.0892 

43 -0.1863 0.6982 -0.0038 -0.0456 0.0898 

44 -0.0860 0.7011 -0.0084 -0.0501 0.0897 

45 -0.1440 0.6934 -0.0107 -0.0521 0.0893 

46 -0.1094 0.6955 -0.0108 -0.0519 0.0893 

47 -0.0889 0.6941 -0.0102 -0.0514 0.0892 

48 -0.2157 0.6997 -0.0091 -0.0500 0.0895 

49 -0.2500 0.7009 -0.0100 -0.0521 0.0895 

50 -0.0836 0.6922 -0.0093 -0.0511 0.0894 
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Table A.3: Local sensitivity analysis for Jt noisy, normalised Rt, normalised Tp (over 

3600 data samples) for 50 statistical runs 

No of runs Min Max Average Median Standard Deviation 

 

 

 

1 -0.2783 0.6505 -0.0323 -0.0518 0.1307 

2 -0.4036 0.7082 -0.0770 -0.0655 0.1249 

3 -0.3362 0.6227 -0.0239 -0.0536 0.0962 

4 -0.5330 0.7538 0.0612 0.0708 0.1207 

5 -0.1335 0.7024 -0.0008 -0.0401 0.0900 

6 -0.3098 0.6035 -0.0655 -0.0718 0.1099 

7 -0.1327 0.6900 -0.0092 -0.0515 0.0896 

8 -0.1724 0.6709 -0.0271 -0.0663 0.0911 

9 -0.5250 0.6866 -0.1055 -0.0780 0.1356 

10 -0.2824 0.6954 -0.0008 -0.0413 0.0900 

11 -0.1689 0.6948 -0.0204 -0.0610 0.0905 

12 -0.3031 0.7189 -0.0511 -0.0571 0.1076 

13 -0.1432 0.6935 -0.0101 -0.0510 0.0907 

14 -0.1075 0.6804 -0.0133 -0.0568 0.0895 

15 -0.1131 0.7846 0.0043 -0.0342 0.1009 

16 -0.2020 0.6969 0.0063 -0.0280 0.0923 

17 -0.2129 0.6884 -0.0096 -0.0487 0.0912 

18 -0.1135 0.7454 0.0056 -0.0320 0.0914 

19 -0.3325 0.6425 -0.0747 -0.0896 0.1086 

20 -0.1571 0.7642 0.0068 -0.0265 0.0958 

21 -0.2269 0.6976 -0.0288 -0.0698 0.0922 

22 -0.1246 0.7236 -0.0044 -0.0384 0.0926 

23 -0.2143 0.6970 0.0207 -0.0112 0.0941 

24 -0.1207 0.7043 -0.0066 -0.0431 0.0911 

25 -0.1758 0.6967 -0.0123 -0.0432 0.0921 

26 -0.1305 0.6945 0.0141 -0.0185 0.0917 

27 -0.0850 0.7126 0.0452 0.0298 0.1082 

28 -0.1426 0.6511 -0.0113 -0.0409 0.0927 

29 -0.1435 0.6817 -0.0368 -0.0753 0.0904 

30 -0.2022 0.7572 0.0150 -0.0066 0.1103 

31 -0.1580 0.6980 -0.0162 -0.0568 0.0909 

32 -0.2035 0.6875 -0.0215 -0.0599 0.0932 

33 -0.0918 0.6951 -0.0092 -0.0505 0.0900 

34 -0.6251 0.6365 -0.0271 -0.0646 0.0927 

35 -0.1935 0.6802 -0.0224 -0.0655 0.0898 

36 -0.3200 0.6875 -0.0080 -0.0365 0.0929 

37 -0.8707 0.6955 -0.0220 -0.0444 0.1005 

38 -0.1098 0.8213 0.0793 0.0825 0.1302 

39 -0.2530 0.7218 0.0422 0.0240 0.1416 

40 -0.4004 0.6906 -0.0036 -0.0431 0.0915 

41 -0.1805 0.7446 0.0564 0.0499 0.1138 

42 -0.2959 0.7020 -0.0802 -0.0986 0.1025 

43 -0.1863 0.6472 -0.0226 -0.0638 0.0918 

44 -0.0888 0.6865 0.0600 0.0537 0.1093 

45 -0.2275 0.6672 -0.0260 -0.0657 0.0912 

46 -0.2108 0.7184 -0.0326 -0.0568 0.0963 

47 -0.2364 0.6950 -0.0108 -0.0379 0.0957 

48 -0.4165 0.7079 0.0191 -0.0179 0.0912 

49 -0.1906 0.7496 0.0007 -0.0350 0.0922 

50 -0.0896 0.7296 0.0247 -0.0012 0.0998 
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B 
LSA code in Mfile format 

 
clear 

clc 

for test_run=1:50 

close all force 

simulation_data=xlsread(’simulation_data.xlsx’); 

% Throughput mathematical/statistical evaluation and normaliz 

Tp_data=simulation_data(:,1); 

Tp_data_norm=norm_func(Tp_data); 

% Jitter mathematical/statistical evaluation and normalization 

Jt_data=simulation_data(:,2); 

Jt_data_norm=norm_func(Jt_data); 

% Response mathematical/statistical evaluation and normaliza 

Rt_data=simulation_data(:,3); 

Rt_data_norm=norm_func(Rt_data); 

input=[Tp_data_norm,Jt_data_norm,Rt_data_norm]; 

input=input’; 

%Building the NN 

trainFcn = ’trainlm’; 

hiddenLayerSize = 10; 

net = feedforwardnet(hiddenLayerSize,trainFcn); % ANN Model 

% net.input.processFcns = {’removeconstantrows’,’mapminmax’} 

 
Appendix 
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% net.output.processFcns = {’removeconstantrows’,’mapminmax’}; 

index=randperm(3600); % Over fitting 

TrainData=[]; 

for i=1:2520 

TrainData(:,i)=input(:,index(i)); 

end 

ValidData=[];%15% for validation 

for i=1:540 

ValidData(:,i)=input(:,index(i+2520)); 

end 

TestData=[]; 

for i=1:540 %15% for test 

TestData(:,i)=input(:,index(3060+i)); 

end 

new_data_input=[TrainData,ValidData,TestData]; 

% Calculate Targets (Based on proposed Mathematical Cost Fu 

Lw_data=simulation_data(:,4); % Rescaling to distinguish simu 

Lw_data=Lw_data*10; 

norm_simulation_data=[Tp_data_norm,Jt_data_norm,Rt_data_nor 

CF=zeros; 

CF_new=zeros; 

for i=1:size(norm_simulation_data,1) 

sample_data=norm_simulation_data(i,:); 

Tp=sample_data(1); 

Jt=sample_data(2); 

Rt=sample_data(3); 

Lw=sample_data(4); 

CF(i,:)=(abs(Tp-Jt)*Rt)*Lw; 

end 

targets=CF’; 

x=new_data_input; 

t=targets; 

net.divideFcn = ’divideind’; 



127 

 

 

 

 

net.divideParam.trainInd = 1:2520; 

net.divideParam.valInd = 2521:3060; 

net.divideParam.testInd = 3061:3600; 

net.performFcn = ’mse’; 

[net,tr] = train(net,x,t); % training ANN 

y = net(x); 

Normal_e = gsubtract(t,y); % deviations from the actual targets 

Normal_performance = mse(net,t,y) % this is the MSE error value 

% view(net) 

avg_Normal_y=mean(y); 

med_Normal_y=median(y); 

min_Normal_y=min(y); 

max_Normal_y=max(y); 

std_Normal_y=std(y); 

avg_Normal_e=mean(Normal_e); 

med_Normal_e=median(Normal_e); 

min_Normal_e=min(Normal_e); 

max_Normal_e=max(Normal_e); 

std_Normal_e=std(Normal_e); 

store_Normal_performance(test_run,:)=Normal_performance; 

Normal_y_avg_result(test_run,:)=avg_Normal_y; 

Normal_y_med_result(test_run,:)=med_Normal_y; 

Normal_y_min_result(test_run,:)=min_Normal_y; 

Normal_y_max_result(test_run,:)=max_Normal_y; 

Normal_y_std_result(test_run,:)=std_Normal_y; 

Normal_e_avg_result(test_run,:)=avg_Normal_e; 

Normal_e_med_result(test_run,:)=med_Normal_e; 

Normal_e_min_result(test_run,:)=min_Normal_e; 

Normal_e_max_result(test_run,:)=max_Normal_e; 

Normal_e_std_result(test_run,:)=std_Normal_e; 

% Visualize cost function trend 

plot(1:900,CF(1:900),’g-’,’LineWidth’,2) 

hold on 
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plot(901:1800,CF(901:1800),’b-’,’LineWidth’,2) 

hold on 

plot(1801:2700,CF(1801:2700),’y-’,’LineWidth’,2) 

hold on 

plot(2701:3600,CF(2701:3600),’r-’,’LineWidth’,2) 

hold off 

grid on 

set(gca,’FontSize’,15,’FontWeight’,’bold’); 

xlabel (’Number of Simulated Scenarios’,’FontSize’, 15, ’FontWe 

ylabel (’Cost Function Value’,’FontSize’, 15,’FontWeight’,’bold 

legend1 = legend(’Normal Operating Condition’,’TCP Flood Attack 

set(legend1,’FontSize’,10); 

%% Local Sensitivity Analysis 

%% Noisy Tp 

% Throughput mathematical/statistical evaluation and normal 

Tp_data=simulation_data(:,1); 

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue; 

% Variance = std ˆ 2; std=1 for standard normal distribution 

% mean = 0; standard normal distribution 

rng(’default’) % reset random seed 

rng(’shuffle’) % shuffle random seed using CPU time (Always bes 

Tp_data_noise = Tp_data + sqrt(1)*randn(size(Tp_data)) + 0; % 

Tp_data_norm=norm_func(Tp_data); 

Tp_data_norm_noise=norm_func(Tp_data_noise); 

input=[Tp_data_norm_noise,Jt_data_norm,Rt_data_norm]; 

input=input’; 

index=randperm(3600); % all simulation indexes 

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av 

% 70% Training Data 

TrainData=[]; 

for i=1:2520 

TrainData(:,i)=input(:,index(i)); 

end 
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% 15% Validation Data 

ValidData=[]; 

for i=1:540 

ValidData(:,i)=input(:,index(i+2520)); 

end 

% 15% Test Data 

TestData=[]; 

for i=1:540 

TestData(:,i)=input(:,index(3060+i)); 

end 

new_data_input=[TrainData,ValidData,TestData]; 

x=new_data_input; 

Tp_y = net(x); % the prediction model is the same, only the inp 

Tp_e = gsubtract(t,Tp_y); % deviations from the actual targets 

Tp_performance = mse(net,t,Tp_y) % this is the MSE error value, 

avg_Tp_y=mean(Tp_y); 

med_Tp_y=median(Tp_y); 

min_Tp_y=min(Tp_y); 

max_Tp_y=max(Tp_y); 

std_Tp_y=std(Tp_y); 

avg_Tp_e=mean(Tp_e); 

med_Tp_e=median(Tp_e); 

min_Tp_e=min(Tp_e); 

max_Tp_e=max(Tp_e); 

std_Tp_e=std(Tp_e); 

store_Tp_performance(test_run,:)=Tp_performance; % mse 

Tp_y_avg_result(test_run,:)=avg_Tp_y; 

Tp_y_med_result(test_run,:)=med_Tp_y; 

Tp_y_min_result(test_run,:)=min_Tp_y; 

Tp_y_max_result(test_run,:)=max_Tp_y; 

Tp_y_std_result(test_run,:)=std_Tp_y; 

Tp_e_avg_result(test_run,:)=avg_Tp_e; 

Tp_e_med_result(test_run,:)=med_Tp_e; 
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Tp_e_min_result(test_run,:)=min_Tp_e; 

Tp_e_max_result(test_run,:)=max_Tp_e; 

Tp_e_std_result(test_run,:)=std_Tp_e; 

%% Noisy Jt 

% Jitter mathematical/statistical evaluation and normalization 

Jt_data=simulation_data(:,2); 

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue; 

% Variance = std ˆ 2; std=1 for standard normal distribution 

% mean = 0; standard normal distribution 

rng(’default’) % reset random seed 

rng(’shuffle’) % shuffle random seed using CPU time 

Jt_data_noise = Jt_data + sqrt(1)*randn(size(Jt_data)) + 0; % 

Jt_data_norm=norm_func(Jt_data); 

Jt_data_norm_noise=norm_func(Jt_data_noise); 

input=[Tp_data_norm,Jt_data_norm_noise,Rt_data_norm]; 

input=input’; 

index=randperm(3600); % all simulation indexes 

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av 

% 70% Training Data 

TrainData=[]; 

for i=1:2520 

TrainData(:,i)=input(:,index(i)); 

end 

% 15% Validation Data 

ValidData=[]; 

for i=1:540 

ValidData(:,i)=input(:,index(i+2520)); 

end 

% 15% Test Data 

TestData=[]; 

for i=1:540 

TestData(:,i)=input(:,index(3060+i)); 

end 
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new_data_input=[TrainData,ValidData,TestData]; 

x=new_data_input; 

Jt_y = net(x); % the prediction model is the same, only the inp 

Jt_e = gsubtract(t,Jt_y); % deviations from the actual targets 

Jt_performance = mse(net,t,Jt_y) % this is the MSE error value, 

avg_Jt_y=mean(Jt_y); 

med_Jt_y=median(Jt_y); 

min_Jt_y=min(Jt_y); 

max_Jt_y=max(Jt_y); 

std_Jt_y=std(Jt_y); 

avg_Jt_e=mean(Jt_e); 

med_Jt_e=median(Jt_e); 

min_Jt_e=min(Jt_e); 

max_Jt_e=max(Jt_e); 

std_Jt_e=std(Jt_e); 

store_Jt_performance(test_run,:)=Jt_performance; 

Jt_y_avg_result(test_run,:)=avg_Jt_y; 

Jt_y_med_result(test_run,:)=med_Jt_y; 

Jt_y_min_result(test_run,:)=min_Jt_y; 

Jt_y_max_result(test_run,:)=max_Jt_y; 

Jt_y_std_result(test_run,:)=std_Jt_y; 

Jt_e_avg_result(test_run,:)=avg_Jt_e; 

Jt_e_med_result(test_run,:)=med_Jt_e; 

Jt_e_min_result(test_run,:)=min_Jt_e; 

Jt_e_max_result(test_run,:)=max_Jt_e; 

Jt_e_std_result(test_run,:)=std_Jt_e; 

%% Noisy Rt 

% Response mathematical/statistical evaluation and normalizatio 

Rt_data=simulation_data(:,3); 

% A_wnoise = A + sqrt(variance)*randn(size(A)) + meanValue; 

% Variance = std ˆ 2; std=1 for standard normal distribution 

% mean = 0; standard normal distribution 

rng(’default’) % reset random seed 



132 

 

 

 

 

rng(’shuffle’) % shuffle random seed using CPU time 

Rt_data_noise = Rt_data + sqrt(1)*randn(size(Rt_data)) + 0; % 

Rt_data_norm=norm_func(Rt_data); 

Rt_data_norm_noise=norm_func(Rt_data_noise); 

input=[Tp_data_norm,Jt_data_norm,Rt_data_norm_noise]; 

input=input’; 

index=randperm(3600); % all simulation indexes 

% [Training Data:Validation Data:Test Data]=[70%:15%:15%] to av 

% 70% Training Data 

TrainData=[]; 

for i=1:2520 

TrainData(:,i)=input(:,index(i)); 

end 

% 15% Validation Data 

ValidData=[]; 

for i=1:540 

ValidData(:,i)=input(:,index(i+2520)); 

end 

% 15% Test Data 

TestData=[]; 

for i=1:540 

TestData(:,i)=input(:,index(3060+i)); 

end 

new_data_input=[TrainData,ValidData,TestData]; 

x=new_data_input; 

Rt_y = net(x); % the prediction model is the same, only the inp 

Rt_e = gsubtract(t,Rt_y); % deviations from the actual targets 

Rt_performance = mse(net,t,Rt_y) % this is the MSE error value, 

avg_Rt_y=mean(Rt_y); 

med_Rt_y=median(Rt_y); 

min_Rt_y=min(Rt_y); 

max_Rt_y=max(Rt_y); 

std_Rt_y=std(Rt_y); 
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end 

avg_Rt_e=mean(Rt_e); 

med_Rt_e=median(Rt_e); 

min_Rt_e=min(Rt_e); 

max_Rt_e=max(Rt_e); 

std_Rt_e=std(Rt_e); 

store_Rt_performance(test_run,:)=Rt_performance; 

Rt_y_avg_result(test_run,:)=avg_Rt_y; 

Rt_y_med_result(test_run,:)=med_Rt_y; 

Rt_y_min_result(test_run,:)=min_Rt_y; 

Rt_y_max_result(test_run,:)=max_Rt_y; 

Rt_y_std_result(test_run,:)=std_Rt_y; 

Rt_e_avg_result(test_run,:)=avg_Rt_e; 

Rt_e_med_result(test_run,:)=med_Rt_e; 

Rt_e_min_result(test_run,:)=min_Rt_e; 

Rt_e_max_result(test_run,:)=max_Rt_e; 

Rt_e_std_result(test_run,:)=std_Rt_e; 

% Perf Values % mse values (over 50 Runs) 

avg_Normal_perf=mean(store_Normal_performance); 

med_Normal_perf=median(store_Normal_performance); 

min_Normal_perf=min(store_Normal_performance); 

max_Normal_perf=max(store_Normal_performance); 

std_Normal_perf=std(store_Normal_performance); 

avg_Tp_perf=mean(store_Tp_performance) 

med_Tp_perf=median(store_Tp_performance) 

min_Tp_perf=min(store_Tp_performance) 

max_Tp_perf=max(store_Tp_performance) 

std_Tp_perf=std(store_Tp_performance) 

avg_Jt_perf=mean(store_Jt_performance); 

med_Jt_perf=median(store_Jt_performance); 

min_Jt_perf=min(store_Jt_performance); 

max_Jt_perf=max(store_Jt_performance); 

std_Jt_perf=std(store_Jt_performance); 
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avg_Rt_perf=mean(store_Rt_performance); 

med_Rt_perf=median(store_Rt_performance); %when Rt is noisy, eval 

min_Rt_perf=min(store_Rt_performance); 

max_Rt_perf=max(store_Rt_performance); 

std_Rt_perf=std(store_Rt_performance); 

plot(1:50,store_Normal_performance,’-g’,’LineWidth’,2) 

hold on 

plot(1:50,store_Tp_performance,’-b’,’LineWidth’,2) 

plot(1:50,store_Jt_performance,’-y’,’LineWidth’,2) 

plot(1:50,store_Rt_performance,’-r’,’LineWidth’,2) 

ylim([0.007 0.03]) 

grid on 

set(gca,’FontSize’,15,’FontWeight’,’bold’); 

xlabel (’Number of Runs’,’FontSize’, 15, ’FontWeight’,’bold’) 

ylabel (’MSE Values (Over 50 Runs)’,’FontSize’, 15,’FontWeight’,’bo 

% legend1 = legend(’Normal Operating Condition’,’Noisy Tp’,’Noisy 

legend1 = legend(’Normal’,’Noisy Tp’,’Noisy Jt’,’Noisy Rt’); 

set(legend1,’FontSize’,10); 

%legend(’Location’,’northeastoutside’) 

% Hypothesis Test 

% p-value 

[p_Tp,h_Tp] = ranksum(store_Normal_performance,store_Tp_performance 

[p_Jt,h_Jt] = ranksum(store_Normal_performance,store_Jt_performance 

[p_Rt,h_Rt] = ranksum(store_Normal_performance,store_Rt_performance 



135 

 

 

 

 

 

 

 

 

 

 

 

C 
FaTree topology code 

 
"""Custom topology 

Directly connected switches plus hosts for fat tree topology: 

host --- switch --- switch --- host 

Adding the ’topos’ dict with a key/value pair to generate 

our newly definedtopology enables one to pass 

in ’--topo=mytopo’ from the command line. 

""" 

from mininet.topo import Topo 

from mininet.node import CPULimitedHost, Host, Node 

from mininet.node import OVSKernelSwitch 

class MyTopo( Topo ): 

"FaT tree topology." 

def  init  ( self ): 

"Create custom topo." 

# Initialize topology 

Topo. init  ( self ) 

# Add hosts 

#leftHost = self.addHost( ’h1’ ) 

#rightHost = self.addHost( ’h2’ ) 

h1=self.addHost(’h1’, cls=Host, ip=’10.0.0.1’, defaultRoute=None) 

h2=self.addHost(’h2’, cls=Host, ip=’10.0.0.2’, defaultRoute=None) 

 
Appendix 
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h3=self.addHost(’h3’, cls=Host, ip=’10.0.0.3’, defaultRoute=None) 

h4=self.addHost(’h4’, cls=Host, ip=’10.0.0.4’, defaultRoute=None) 

h5=self.addHost(’h5’, cls=Host, ip=’10.0.0.5’, defaultRoute=None) 

h6=self.addHost(’h6’, cls=Host, ip=’10.0.0.6’, defaultRoute=None) 

h7=self.addHost(’h7’, cls=Host, ip=’10.0.0.7’, defaultRoute=None) 

h8=self.addHost(’h8’, cls=Host, ip=’10.0.0.8’, defaultRoute=None) 

h9=self.addHost(’h9’, cls=Host, ip=’10.0.0.9’, defaultRoute=None) 

h10=self.addHost(’h10’,cls=Host,ip=’10.0.0.10’,defaultRoute=None) 

h11=self.addHost(’h11’,cls=Host,ip=’10.0.0.11’,defaultRoute=None) 

h12=self.addHost(’h12’,cls=Host,ip=’10.0.0.12’,defaultRoute=None) 

h13=self.addHost(’h13’,cls=Host,ip=’10.0.0.13’,defaultRoute=None) 

h14=self.addHost(’h14’,cls=Host,ip=’10.0.0.14’,defaultRoute=None) 

h15=self.addHost(’h15’,cls=Host,ip=’10.0.0.15’,defaultRoute=None) 

h16=self.addHost(’h16’,cls=Host,ip=’10.0.0.16’,defaultRoute=None)   

# Add switches 

#leftSwitch = self.addSwitch( ’s3’ ) 

#rightSwitch = self.addSwitch( ’s4’ ) 

s1 = self.addSwitch(’s1’, cls=OVSKernelSwitch) 

s2 = self.addSwitch(’s2’, cls=OVSKernelSwitch) 

s3 = self.addSwitch(’s3’, cls=OVSKernelSwitch) 

s4 = self.addSwitch(’s4’, cls=OVSKernelSwitch) 

s5 = self.addSwitch(’s5’, cls=OVSKernelSwitch) 

s6 = self.addSwitch(’s6’, cls=OVSKernelSwitch) 

s7 = self.addSwitch(’s7’, cls=OVSKernelSwitch) 

s8 = self.addSwitch(’s8’, cls=OVSKernelSwitch) 

s9 = self.addSwitch(’s9’, cls=OVSKernelSwitch) 

s10 = self.addSwitch(’s10’, cls=OVSKernelSwitch) 

# Add links between switches 

#self.addLink( leftHost, leftSwitch ) 

#self.addLink( leftSwitch, rightSwitch ) 

#self.addLink( rightSwitch, rightHost ) 

self.addLink(s1, s3) 

self.addLink(s1, s5) 
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self.addLink(s2, s4) 

self.addLink(s2, s6) 

self.addLink(s3, s7) 

self.addLink(s3, s8) 

self.addLink(s4, s7) 

self.addLink(s4, s8) 

self.addLink(s5, s9) 

self.addLink(s5, s10) 

self.addLink(s6, s9) 

self.addLink(s6, s10) 

# Add links between hosts 

self.addLink(h1, s7) 

self.addLink(h2, s7) 

self.addLink(h3, s7) 

self.addLink(h4, s7) 

self.addLink(h5, s8) 

self.addLink(h6, s8) 

self.addLink(h7, s8) 

self.addLink(h8, s8) 

self.addLink(h9, s9) 

self.addLink(h10, s9) 

self.addLink(h11, s9) 

self.addLink(h12, s9) 

self.addLink(h13, s10) 

self.addLink(h14, s10) 

self.addLink(h15, s10) 

self.addLink(h16, s10) 

topos = { ’mytopo’: ( lambda: MyTopo() ) } 
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