1,201 research outputs found

    Aspects of forest biomass in the earth system: Its role and major unknowns

    No full text
    Forests are a major and diverse land cover occupying a third of the terrestrial vegetated surface; they store 50 to 65% of terrestrial organic carbon (including the soil) and contribute half to terrestrial productivity. Forest biomass stores close to 80% of all the biomass on Earth. As noted earlier, forests play an important role in the Earth system as carbon stocks, carbon sinks, mediator of the water cycle and as modifier of land surface roughness and albedo. Moreover, forests play a role as habitat for many species, are an economic source of timber and firewood and have recreational value for local populations and touristic visitors. Here, we appraise how ecosystem functions are influenced in particular by biomass and its vertical and horizontal distribution and hypothesize that almost all functions are directly or indirectly related to biomass, in addition to other factors. At landscape or regional scale, heterogeneity of biomass presumably has an important influence on a variety of processes, but there are gaps both in quantifying the heterogeneity of forests globally and in quantifying the effect of this heterogeneity. Similarly, while the role of forests for the global carbon cycle is important, large uncertainties exist regarding stocks, turnover times and the carbon sink function in forest, as an analysis of state-of-the-art carbon cycle and vegetation models shows. Upcoming global satellite missions such as GEDI, NISAR and BIOMASS will be able to address the above uncertainties and lack of understanding in combination with modeling approaches, in particular by exploiting information on vertical and horizontal heterogeneity

    The environment of AGNs and the activity degree of their surrounding galaxies

    Full text link
    Aims. We present results of a comprehensive spectral study on the large-scale environment of AGNs based on Sloan Spectroscopic Survey data. Methods. We analyzed the spectra of galaxies in the environment of AGN and other activity classes up to distances of 1 Mpc. Results. The mean H{\alpha} and [OIII] {\lambda}5007 line luminosities in the environmental galaxies within a projected radius of 1 Mpc are highest around Seyfert 1 galaxies, with decreasing luminosities for Seyfert 2 and HII galaxies, and lowest for absorption line galaxies. Furthermore, there is a trend toward H{\alpha} and [OIII] luminosities in the environmental galaxies increasing as a function of proximity to the central emission line galaxies. There is another clear trend toward a neighborhood effect within a radius of 1000 kpc for the AGN and non-AGN types: Seyfert galaxies tend to have the highest probability of having another Seyfert galaxy in the neighborhood. HII galaxies tend to have the highest probability of having another HII galaxy in the neighborhood, etc. The number of companions within 1000 kpc is inversely correlated with the H{\alpha}, [OIII] {\lambda}5007, as well as with the continuum luminosities of the central galaxies, regardless of whether they are of Seyfert, HII, or absorption line types.Comment: 9 pages, 6 figures, to be published in A&

    Nitrification amplifies the decreasing trends of atmospheric oxygen and implies a larger land carbon uptake

    Get PDF
    [1] Atmospheric O-2 trend measurements are used to partition global oceanic and land biotic carbon sinks on a multiannual basis. The underlying principle is that a terrestrial uptake or release of CO<sub>2</sub> is accompanied by an opposite flux of O-2. The molar ratio of the CO<sub>2</sub> and O-2 terrestrial fluxes should be 1, if no other elements are considered. However, reactive nitrogen produced by human activities (e.g., fertilizers, N deposition) is also being incorporated into plant tissues. The various reaction pathways of the terrestrial nitrogen cycle cause fluxes of atmospheric O-2. Thus the cycles of nitrogen, carbon, and oxygen must be linked together. We report here on previously unconsidered anthropogenic nitrogen-related mechanisms which impact atmospheric O-2 trends and thus the derived global carbon sinks. In particular, we speculate that anthropogenic-driven changes are driving the global nitrogen cycle to a more oxidized state, primarily through nitrification, nitrate fertilizer industrial production, and combustion of fossil fuels and anthropogenic biomass burning. The sum of these nitrogen-related processes acts to additionally decrease atmospheric O-2 and slightly increase atmospheric CO<sub>2</sub>. We have calculated that the effective land biotic O-2: CO<sub>2</sub> molar ratio ranges between 0.76 and 1.04 rather than 1.10 ( moles of O-2 produced per mole of CO<sub>2</sub> consumed) over the period 1993 - 2003, depending on which of four contrasting nitrogen oxidation and reduction pathway scenarios is used. Using the scenario in which we have most confidence, this implies a 0.23 PgC yr(-1) correction to the global land biotic and oceanic carbon sinks of most recently reported estimates over 1993 - 2003, with the land biotic sink becoming larger and the oceanic sink smaller. We have attributed large uncertainties of 100% to all nitrogen-related O-2 and CO<sub>2</sub> fluxes and this corresponds up to +/- 0.09 PgC yr(-1) increase in global carbon sink uncertainties. Thus accounting for anthropogenic nitrogen-related terrestrial fluxes of O-2 results in a 45% larger land biotic sink of 0.74 +/- 0.78 PgC yr(-1) and a slightly smaller oceanic sink of 2.01 +/- 0.66 PgC yr(-1) for the decade 1993 - 2003. [References: 38

    Soils apart from equilibrium ? consequences for soil carbon balance modelling

    Get PDF
    International audienceMany projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para\-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium) overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable amount of current carbon accumulation

    Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

    Get PDF
    [1] Volatile (VOC) flux from leaves may be expressed as G(S)DeltaP, where G(S) is stomatal conductance to specific compound and DeltaP partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in G(S) are balanced by increases in DeltaP such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m(3) mol(-1)). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 10(3) have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10(-2)-10(1) are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance DeltaP in response to a decrease in G(S) is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase

    On the potential of Sentinel-2 for estimating Gross Primary Production

    Get PDF

    Summarizing the state of the terrestrial biosphere in few dimensions

    No full text
    In times of global change, we must closely monitor the state of the planet in order to understand gradual or abrupt changes early on. In fact, each of the Earth's subsystems – i.e. the biosphere, atmosphere, hydrosphere, and cryosphere – can be analyzed from a multitude of data streams. However, since it is very hard to jointly interpret multiple monitoring data streams in parallel, one often aims for some summarizing indicator. Climate indices, for example, summarize the state of atmospheric circulation in a region. Although such approaches are also used in other fields of science, they are rarely used to describe land surface dynamics. Here, we propose a robust method to create indicators for the terrestrial biosphere using principal component analysis based on a high-dimensional set of relevant global data streams. The concept was tested using 12 explanatory variables representing the biophysical states of ecosystems and land-atmosphere water, energy, and carbon fluxes. We find that two indicators account for 73 % of the variance of the state of the biosphere in space and time. While the first indicator summarizes productivity patterns, the second indicator summarizes variables representing water and energy availability. Anomalies in the indicators clearly identify extreme events, such as the Amazon droughts (2005 and 2010) and the Russian heatwave (2010), they also allow us to interpret the impacts of these events. The indicators also reveal changes in the seasonal cycle, e.g. increasing seasonal amplitudes of productivity in agricultural areas and in arctic regions. We assume that this generic approach has great potential for the analysis of land-surface dynamics from observational or model data

    Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook

    Get PDF
    Knorr et al.&nbsp;(2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to temperature. We show that this conclusion is equivocal, largely dependent on their specific selection of data and does not persist when the data set of K&#228;tterer et al.&nbsp;(1998) is analysed in a more appropriate way. Further, we analyse how statistical properties of the model parameters may interfere with correlative analyses that relate the Q<sub>10</sub> of soil respiration with the basal rate, where the latter is taken as a proxy for soil organic matter quality. We demonstrate that negative parameter correlations between Q<sub>10</sub>-values and base respiration rates are statistically expected and not necessarily provide evidence for a higher temperature sensitivity of low quality soil organic matter. Consequently, we propose it is premature to conclude that stable soil carbon is more sensitive to temperature than labile carbon
    corecore