26 research outputs found

    Statistical Physics and Light-Front Quantization

    Full text link
    Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper we develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. We construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. We then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. Our approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, we introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, we explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problem.Comment: 30 pages, 3 figures; v2: Refs. added, minor changes, accepted for publication in PR

    Relating parton model and color dipole formulation of heavy quark hadroproduction

    Get PDF
    At high center of mass energies, hadroproduction of heavy quarks can be expressed in terms of the same color dipole cross section as low Bjorken-x deep inelastic scattering. We show analytically that at leading order, the dipole formulation is equivalent to the gluon-gluon fusion mechanism of the conventional parton model. In phenomenological application, we employ a parameterization of the dipole cross section which also includes higher order and saturation effects, thereby going beyond the parton model. Numerical calculations in the dipole approach agree well with experimental data on open charm production over a wide range of energy. Dipole approach and next to leading order parton model yield similar values for open charm production, but for open bottom production, the dipole approach tends to predict somewhat higher cross sections than the parton model.Comment: 16 pages, 4 figure

    Nuclear effects in the Drell-Yan process at very high energies

    Full text link
    We study Drell-Yan (DY) dilepton production in proton(deuterium)-nucleus and in nucleus-nucleus collisions within the light-cone color dipole formalism. This approach is especially suitable for predicting nuclear effects in the DY cross section for heavy ion collisions, as it provides the impact parameter dependence of nuclear shadowing and transverse momentum broadening, quantities that are not available from the standard parton model. For p(D)+A collisions we calculate nuclear shadowing and investigate nuclear modification of the DY transverse momentum distribution at RHIC and LHC for kinematics corresponding to coherence length much longer than the nuclear size. Calculations are performed separately for transversely and longitudinally polarized DY photons, and predictions are presented for the dilepton angular distribution. Furthermore, we calculate nuclear broadening of the mean transverse momentum squared of DY dileptons as function of the nuclear mass number and energy. We also predict nuclear effects for the cross section of the DY process in heavy ion collisions. We found a substantial nuclear shadowing for valence quarks, stronger than for the sea.Comment: 46 pages, 18 figures, title changed and some discussion added, accepted for publication in PR

    Resummation of nuclear enhanced higher twist in the Drell Yan process

    Get PDF
    We investigate higher twist contributions to the transverse momentum broadening of Drell Yan pairs in proton nucleus collisions. We revisit the contribution of matrix elements of twist-4 and generalize this to matrix elements of arbitrary twist. An estimate of the maximal nuclear broadening effect is derived. A model for nuclear enhanced matrix elements of arbitrary twist allows us to give the result of a resummation of all twists in closed form. Subleading corrections to the maximal broadening are discussed qualitatively.Comment: 10 pages, 5 figures; v2: minor changes in text, acknowledgement added; v3: mistake in fig. 1 correcte

    The QCD Pomeron in ultraperipheral heavy ion collisions: III. Photonuclear production of heavy quarks

    Get PDF
    We calculate the photonuclear production of heavy quarks in ultraperipheral heavy ion collisions. The integrated cross section and the rapidity distribution are computed employing sound high energy QCD formalisms as the collinear and semihard approaches as well as the saturation model. In particular, the color glass condensate (CGC) formalism is also considered using a simple phenomenological parameterization for the color field correlator in the medium, which allow us to obtain more reliable estimates for charm and bottom production at LHC energies.Comment: 15 pages, 2 figures. Extended version to be published in Eur. Phys. J.

    Physics of the Muon Spectrometer of the ALICE Experiment

    Full text link
    The main goal of the Muon spectrometer of the ALICE experiment at LHC is the measurement of heavy quark production in p+p, p+A and A+A collisions at LHC energies, via the muonic channel. Physics motivations and expected performances have been presented in this talk.Comment: 10 pages and 4 figures. Talk presented in the ICPAQGP Conference, February 8-12, 2005, Salt Lake City, Kolkata, India. Web page of the conference : http://www.veccal.ernet.in/~icpaqgp

    Gluon Shadowing in DIS off Nuclei

    Full text link
    Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB < 0.01. Such a formalism incorporates naturally color transparency and coherence length effects. Calculations of the nuclear shadowing for the \bar{q}q Fock component of the photon are based on an exact numerical solution of the evolution equation for the Green function, using a realistic form of the dipole cross section and nuclear density function. Such an exact numerical solution is unavoidable for xB > 0.0001, when a variation of the transverse size of the \bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.Comment: 29 pages including 7 figures; Fig.7 modified, some references and corresponding discussion adde
    corecore