114 research outputs found
La recherche biomédicale en Suisse : espace social, discours et pratiques
Cette Ă©tude porte sur la recherche biomĂ©dicale en Suisse dans une perspective interprĂ©tative. Elle s'intĂ©resse Ă l'usage que font les acteurs scientifiques et institutionnels de la catĂ©gorie «biomĂ©dical», Ă la signification qu'ils en donnent et aux processus de structuration de la recherche biomĂ©dicale autour de ces enjeux de catĂ©gorisation. Nous avons formulĂ© l'hypothĂšse que le «biomĂ©dical» pouvait ĂȘtre considĂ©rĂ© comme un label, Ă savoir une stratĂ©gie discursive de positionnement des acteurs, ou pouvait constituer un champ, Ă savoir un espace social de recherche fortement structurĂ©. Pour pouvoir vĂ©rifier la validitĂ© de ces hypothĂšses, trois perspectives analytiques ont Ă©tĂ© retenues: topographie, discours et pratiques. Dans un premier temps, nous avons Ă©tabli une topographie de la recherche biomĂ©dicale en repĂ©rant les acteurs (et leur appartenance disciplinaire) et les institutions qui s'associent au terme «biomĂ©dical», que ce soit pour dĂ©crire des institutions ou des projets de recherche. Les rĂ©sultats de cette analyse offrent une premiĂšre approximation d'un espace de la recherche en donnant une image d'un domaine peu unifiĂ©. Ainsi, l'usage de la catĂ©gorie «biomĂ©dical» dans les projets des chercheurs n'est pas le fait des seuls mĂ©decins et biologistes, mais Ă©galement de reprĂ©sentants d'autres disciplines. La physique, la chimie et les sciences de l'ingĂ©nieur occupent ainsi Ă©galement une place trĂšs importante dans cet espace de recherche. Puis, dans une perspective discursive, nous avons analysĂ© le «biomĂ©dical» non seulement comme un label, mais Ă©galement comme un objet-frontiĂšre permettant d'articuler diffĂ©rentes significations, de produire du sens lĂ oĂč des univers de recherche pourraient s'opposer, ou Ă coordonner des politiques qui ne l'Ă©taient pas. L'analyse des diffĂ©rentes dĂ©finitions du «biomĂ©dical» nous a confirmĂ© l'existence d'un espace social marquĂ© par une grande diversitĂ© disciplinaire, toutefois articulĂ© autour d'un coeur mĂ©dical et, plus particuliĂšrement, d'une application mĂ©dicale (potentielle ou actuelle). De plus, il ne semble pas y avoir de profondes luttes pour l'Ă©tablissement de limites claires au «biomĂ©dical». Finalement, nous avons Ă©tudiĂ© les diffĂ©rentes activitĂ©s de la production des savoirs (carriĂšres, financement, collaboration, publication, etc.). Cette analyse a permis de comprendre que la diversitĂ© des dĂ©finitions et des significations que les acteurs attribuent Ă la catĂ©gorie «biomĂ©dical» a aussi un ancrage dans la matĂ©rialitĂ© des rĂ©seaux sociotechniques dans lesquels les chercheurs s'inscrivent. Ces Ă©lĂ©ments confirment l'idĂ©e d'une fragmentation et d'une hĂ©tĂ©rogĂ©nĂ©itĂ© de l'espace de la recherche biomĂ©dicale. En dĂ©pit de cette fragmentation, nous avons Ă©galement montrĂ© que diffĂ©rentes mesures et instruments d'action publique visant Ă organiser et rĂ©guler les pratiques des chercheurs sont mis en oeuvre. NĂ©anmoins et paradoxalement, la recherche biomĂ©dicale ne constitue pas pour autant un objet de politique scientifique abordĂ© par les autoritĂ©s politiques, en tous les cas pas sous l'angle de la catĂ©gorie «biomĂ©dical». Ces diffĂ©rents niveaux d'analyse ont permis d'arriver Ă la conclusion que la catĂ©gorie «biomĂ©dical» n'est pas suffisamment institutionnalisĂ©e et que le degrĂ© d'interaction entre l'ensemble des chercheurs qui en font usage est trop faible pour que l'on puisse considĂ©rer le «biomĂ©dical» comme un espace social fortement organisĂ© et structurĂ©, Ă savoir un champ de la recherche biomĂ©dicale. Cela est principalement liĂ© au fait que les acteurs ne partagent pas les mĂȘmes dĂ©finitions de ce qu'est (ou devrait ĂȘtre) le «biomĂ©dical», que leurs pratiques de recherche s'inscrivent dans des univers relativement sĂ©parĂ©s, et que cette diversitĂ© ne donne pas lieu Ă de fortes luttes pour l'imposition d'une dĂ©finition lĂ©gitime ou de normes d'excellence scientifiques dominantes. Par contre, les analyses ont permis de confirmer la validitĂ© du «biomĂ©dical» comme label, puisque les acteurs se servent de cette catĂ©gorie pour valoriser leurs pratiques de recherche et se positionner, mĂȘme si d'autres notions ont Ă©mergĂ© ces derniĂšres annĂ©es («translationnel», «biotech», «medtech», mĂ©decine personnalisĂ©e, etc.). On peut, in fine, considĂ©rer le «biomĂ©dical» comme un probable langage commun («objet-frontiĂšre») reposant tant sur la scientificisation du mĂ©dical que sur la mĂ©dicalisation des sciences («de base» et «techniques »), visant Ă amĂ©liorer les conditions de possibilitĂ© d'un dialogue fructueux entre chercheurs fondamentaux et cliniciens
Motivation and personality factors of Generation Z high school students aspiring to study human medicine
Background: A new generation of medical students, Generation Z (Gen Z), is becoming the predominant population in medical schools and will join the workforce in a few yearsâ time. Medicine has undergone serious changes in high-income countries recently. Therefore, it is unclear how attractive the medical profession still is for high school students of Gen Z. The aim of this study was to investigate what motivation leads Gen Z students in their choice to study human medicine, and how they see their professional future. Our study was guided by motivation theory and the influence of personality traits and other personal factors on studentsâ choice of university major.
Methods: In a cross-sectional online survey, we included third- and fourth-year high school students in Northern Switzerland. We examined the importance of criteria when choosing a university major: personality traits, career motivation, life goals, and other considerations influencing the choice of human medicine versus other fields of study. Results Of 1790 high school students, 456 (25.5%) participated in the survey (72.6% women, mean age 18.4 years); 32.7% of the respondents aspired to major in medicine at university. For all respondents, the foremost criterion for selecting a field of study was âinterest in the field,â followed by âincomeâ and âjob security.â High school students aiming to study human medicine attached high importance to âmeaningful workâ as a criterion; supported by 36.2% of those students answering that helping and healing people was a core motivation to them. They also scored high on altruism (pâ<â0.001 against all groups compared) and intrinsic motivation (pâ<â0.001) and were highly performance- (pâ<â0.001) and career-minded (pâ<â0.001). In contrast, all the other groups except the law/economics group had higher scores on extraprofessional concerns.
Conclusions: Swiss Gen Z students aspiring to study human medicine show high intrinsic motivation, altruism, and willingness to perform, sharing many values with previous generations. Adequate work-life balance and job security are important issues for Gen Z. Regarding the current working conditions, the ongoing shortage of physicians, and recent findings on physiciansâ well-being, the potential for improvement and optimization is high
Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers.
Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the "tightness" of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity
Combined optical and electronic sensing of epithelial cells using planar organic transistors.
A planar, conducting-polymer-based transistor for combined optical and electronic monitoring of live cells provides a unique platform for monitoring the health of cells in vitro. Monitoring of MDCK-I epithelial cells over several days is shown, along with a demonstration of the device for toxicology studies, of use in future drug discovery or diagnostics applications
High-performance transistors for bioelectronics through tuning of channel thickness.
UNLABELLED: Despite recent interest in organic electrochemical transistors (OECTs), sparked by their straightforward fabrication and high performance, the fundamental mechanism behind their operation remains largely unexplored. OECTs use an electrolyte in direct contact with a polymer channel as part of their device structure. Hence, they offer facile integration with biological milieux and are currently used as amplifying transducers for bioelectronics. Ion exchange between electrolyte and channel is believed to take place in OECTs, although the extent of this process and its impact on device characteristics are still unknown. We show that the uptake of ions from an electrolyte into a film of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate ( PEDOT: PSS) leads to a purely volumetric capacitance of 39 F/cm(3). This results in a dependence of the transconductance on channel thickness, a new degree of freedom that we exploit to demonstrate high-quality recordings of human brain rhythms. Our results bring to the forefront a transistor class in which performance can be tuned independently of device footprint and provide guidelines for the design of materials that will lead to state-of-the-art transistor performance
Recommended from our members
Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring.
Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from in vitro models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow. Here we present a microfluidic platform integrated with in-line electronic sensors based on the organic electrochemical transistor. Our goals are two-fold, first to generate a platform to host cells in a more physiologically relevant environment (using physiologically relevant fluid shear stress (FSS)) and second to show efficient integration of multiple different methods for assessing cell morphology, differentiation, and integrity. These include optical imaging, impedance monitoring, metabolite sensing, and a wound-healing assay. We illustrate the versatility of this multi-parametric monitoring in giving us increased confidence to validate the improved differentiation of cells toward a physiological profile under FSS, thus yielding more accurate data when used to assess the effect of drugs or toxins. Overall, this platform will enable high-content screening for in vitro drug discovery and toxicology testing and bridges the existing gap in the integration of in-line sensors in microfluidic devices
Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles
publisher: Elsevier articletitle: Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles journaltitle: Carbon articlelink: http://dx.doi.org/10.1016/j.carbon.2017.04.018 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.publisher: Elsevier articletitle: Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles journaltitle: Carbon articlelink: http://dx.doi.org/10.1016/j.carbon.2017.04.018 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.This work was supported in part by the Brazilian Agencies CNPq, CAPES and FAPESP. The authors would like to thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant 2013/08293-7. N.M.P. is supported by the European Research Council PoC 2015 âSilkeneâ No. 693670, by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 âPolymer Nanocompositesâ) and under the Fet Proactive âNeurofibresâ No. 732344
Fabrication and characterisation of hybrid photodiodes based on PCPDTBTâZnO active layers
We report the fabrication and characterisation of an organicâinorganic hybrid photodiode (HPD) based on PCPDTBT and Zinc Oxide (ZnO) photoactive layers. The main benefit of using these materials is that multi spectral light sensing from the UV through to the Near Infrared is achieved, encompassing wavelengths âŒ350â870 nm. To our knowledge, this is one of the widest range responses reported for an inorganicâorganic hybrid photodiode. The evaluation of the technology shows the devices exhibit one of the lowest levels of dark currents reported for a HPD, but some limitations exist due to a low onâoff ratio and non-linearity of the responsivity at low incident power. The stability of devices made with PCPDTBT:ZnO active layers is compared to more commonly reported P3HT:ZnO devices in dark and it is shown that using PCPDTBT substantially improves lifetime
- âŠ