12 research outputs found

    The dielectric response of phenothiazine‑based glass‑formers with different molecular complexity

    Get PDF
    We examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not ‘ordinary’ liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter βKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of βKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π–π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed

    Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former

    Get PDF
    In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τα = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H+ hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent βKWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications

    How to align a nematic glassy phase - Different conditions - Different results

    No full text
    Influence of different factors on nematic alignment and relaxation dynamics in supercooled mixture of liquid crystals E7 was investigated by means of dielectric and rheo-dielectric spectroscopy. Results show that elevated pressure or application of strong oscillatory shear aligned the nematic director parallel to the electrodes. On the other hand, if after the shear treatment a static electric field is applied an alignment of the nematic director perpendicular to the electrodes is even better than in the sample quenched and aligned by bias field without the shear treatment
    corecore