8 research outputs found

    Evaluation of color prediction models in the decoration of ceramic tiles

    Get PDF
    The manufacturing of ceramic tiles is a very complex process, where a wide range of variables has an important influence in the final product. With regard to external appearance, the most of the production defects take place in the decoration station. Nevertheless, these defects are usually detected before baking, when the product is already finished, causing an important loss of effectives. Under this perspective, a mechanism able to detect the printing defects in the green parts would archieve 2 goals: on one hand, the reductions of the nonquality consts since green parts can be more easily recycled; and on the other hand, it would point out the real root cause of the failure by indicating, for instance, which ink is causing the problem. Color Prediction Models (CPM) are mathematical approaches which relate the microscopic distribution of the printed dots of a halftone image withe the resulting macroscopic color. It usage is extended in the field of Graphic Arts, especially for calibration and fine image reproduction. However, they are barely known in the ceramic tile industry, a sector that keeps many similarities with the Graphic Arts one in terms of decorating. In this paper, we analyzed the prediction quality of 4 succesful CPM (Murray-Davies, Yule-Nielsen, Neugebauer an Neugebauer Modified Yule-Nielsen) on 1 and 2 inks halftones printed on ceramic substrates, setting a comparison between them by means of linear and non-linear optimization techniques. Moreover, we proposed a value for the enigmatic "n" parameter on ceramic surfaces, which is said to model the optical dot gain phenomenon

    Disc-based microarrays: principles and analytical applications

    Full text link
    [EN] The idea of using disk drives to monitor molecular biorecognition events on regular optical discs has received considerable attention during the last decade. CDs, DVDs, Blu-ray discs and other new optical discs are universal and versatile supports with the potential for development of protein and DNA microarrays. Besides, standard disk drives incorporated in personal computers can be used as compact and affordable optical reading devices. Consequently, a CD technology, resulting from the audio-video industry, has been used to develop analytical applications in health care, environmental monitoring, food safety and quality assurance. The review presents and critically evaluates the current state of the art of disc-based microarrays with illustrative examples, including past, current and future developments. Special mention is made of the analytical developments that use either chemically activated or raw standard CDs where proteins, oligonucleotides, peptides, haptens or other biological probes are immobilized. The discs are also used to perform the assays and must maintain their readability with standard optical drives. The concept and principle of evolving disc-based microarrays and the evolution of disk drives as optical detectors are also described. The review concludes with the most relevant uses ordered chronologically to provide an overview of the progress of CD technology applications in the life sciences. Also, it provides a selection of important references to the current literature.This work was supported by the Spanish Ministry of Economy and Competitiveness (project CTQ2013-45875-R) and Generalitat Valenciana (PROMETEO II 2014/040 and ACOMP 2012/158). All authors were partially sponsored by the European Regional Development Fund.Morais, S.; Puchades, R.; Maquieira Catala, Á. (2016). Disc-based microarrays: principles and analytical applications. Analytical and Bioanalytical Chemistry. 408(17):4523-4534. https://doi.org/10.1007/s00216-016-9423-1S4523453440817Petryayeva E, Algar WR. RSC Adv. 2015;5:22256–82.Ozcan A. Lab Chip. 2014;14:3187–94.Yu HZ, Li Y, Ou LML. Acc Chem Res. 2013;46:258–68.Morais S, Tortajada-Genaro L, Maquieira A. Expert Rev Mol Diagn. 2014;14:773–5.Brahima Sanou, ICT Data and Statistics Division (2015) The world in 2015. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdfContreras-Naranjo JC, Wei Q, Ozcan A. IEEE J Sel Top Quantum Electron. 2016;22:7100414.International Video Federation. European video vearbook 2014. Brussels: International Video Federation; 2014.Future market insights (2015) Recordable optical disc market– blu-ray disc is to be reckoned with new technologies due to demand from media and entertainment: global industry analysis and opportunity assessment 2015–2025. http://www.futuremarketinsights.com/reports/recordable-optical-disc-marketHattori Masakatsu, Suzuki Hiroshi, Sugaya Seiichi (2015) Trends in Technologies for HDDs, ODDs, and SSDs, and Toshiba’s Approach. http://toshiba.semicon-storage.com/product/storage/pdf/ToshibaReview_vol66n8_02.pdfEkins RP, Chu FW. Clin Chem. 1991;37:1955–67.Bañuls MJ, Morais S, Tortajada-Genaro LA, Maquieira A. Microarray technology: methods and applications. In: Li PCH, Sedighi A, Wang L, editors. Methods in molecular biology, vol. 1368. New York: Springer; 2016. p. pp 37–51.Kido H, Maquieira A, Hammock BD. Anal Chim Acta. 2000;411:1–11.La Clair JJ, Burkart MD. Org Biomol Chem. 2003;1:3244–9.Wang Z, Li RX (2007) Nanoscale Res Lett (2007) 2:69-74Li Y, Wang Z, Ou LML, Yu HZ. Anal Chem. 2007;79:426–33.Bañuls MJ, García-Piñón F, Puchades R, Maquieira A. Bioconjug Chem. 2008;19:665–72.Tamarit-López J, Morais S, Bañuls MJ, Puchades R, Maquieira A. Anal Chem. 2010;82:1954–63.Tamarit-López J, Morais S, Puchades R, Maquieira A. Bioconjug Chem. 2011;22:2573–80.Arai T, Gopinath SCB, Mizuno H, Kumar PKR, Rockstuhl C, Awazu K, et al. Jpn J Appl Phys. 2007;46:4003–6.Gopinath SCB, Awazu K, Tominaga J, Kumar PKR. ACS Nano. 2008;2:1885–95.Brun EM, Puchades R, Maquieira A. Anal Chem. 2013;85:4178–86.Tamarit-López J, Morais S, Puchades R, Maquieira A. Anal Chim Acta. 2008;609:120–30.Song Y, Luo D, Ye S, Hou H, Wang L. Appl Surf Sci. 2012;258:2584–90.Barrios CA, Canalejas-Tejeros V, Herranz S, Moreno-Bondi MC, Avella-Oliver M, Puchades R, et al. Plasmonics. 2014;9:645–9.Barrios CA, Canalejas-Tejeros V. Nanoscale. 2015;7:3435–9.Peris E, Bañuls MJ, Puchades R, Maquieira A. J Mater Chem B. 2013;1:6245–53.Arnandis-Chover T, Morais S, Tortajada-Genaro LA, Puchades R, Maquieira A, Berganza J, et al. Talanta. 2012;101:405–12.Dobosz P, Morais S, Puchades R, Maquiera A. Biosens Bioelectron. 2015;69:294–300.Dobosz P, Morais S, Puchades R, Maquiera A. Anal Chem. 2015;87:9817–24.Morais S, Tamarit-López J, Carrascosa J, Puchades R, Maquieira A. Anal Bioanal Chem. 2008;391:2837–44.Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Boyette S. Anal Chem. 2006;78:5893–9.Yamaji K, Takase M (1990) Idemitsu Petrochemical co., Ltd., Japan, 1990 CA2014294A1, Canada.Challener WA, Ollmann RR (1998) US Patent 5994150.Gordon JF (1994) European Patent EP 0 782 705 81Mian A, Kieffer-Higgings S G, Corey GD (1998) Patent WO97/21090Virtanen J (1998) US Patent 6030581Pallapa M, Oua LML, Parameswaran M, Yu HZ. Sens Actuators, B. 2010;148:620–3.Ivanov YD, Pleshakova TO, Krohin NV, Kaysheva AL, Usanov SA, Archakov AI. Biosens Bioelectron. 2013;43:384–90.Alexandre I, Houbion Y, Collet J, Hamels S, Demarteau J, Gala JL, et al. Biotechniques. 2002;33:435–9.Barathur R, Bookout J, Sreevatsan S, Gordon J, Werner M, Thor G, et al. Psychiatr Genet. 2002;12:193–206.Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grassle J, et al. Angew Chem Int Ed. 2006;45:270–3.Park KH, Lee SQ, Kim EK, Moon SE, Cho YH, Gokarna A, et al. Ultramicroscopy. 2008;108:1319–24.Kim KH, Lee SY, Kim S, Jeong SG. Curr Appl Phys. 2008;8:687–91.Donolato M, Anunes P, Zardán-Gómez de la Torre T, Hwuc E, Chen CH, Burger R, et al. Biosens Bioelectron. 2015;67:649–55.Nolte DD. Rev Sci Instrum. 2009;80:101101.http://www.gyros.comhttp://www.quanterix.com/http://www.pall.comMorais S, Marco-Moles R, Puchades R, Maquieira A. Chem Commun. 2006;22:2368–70.Morais S, Carrascosa J, Mira D, Puchades R, Maquieira A. Anal Chem. 2007;79:7628–35.Li X, Shi M, Cui C, Yu HZ. Anal Chem. 2014;86:8922–6.Gopinath SCB, Awazu K, Fons P, Tominaga J. Anal Chem. 2009;81:4963–70.Morais S, Tortajada-Genaro L.A., Arnandis-Chover T, Puchades R, Maquieira A. Anal Chem. 2009;81:5646–54.Potyrailo RA, Morris WG, Wroczynski R, Hassib L, Miller P, Dworken B, et al. Sens Actuators, B. 2009;136:203–8.Morais S, Tamarit-López J, Puchades R, Maquieira A. Environ Sci Technol. 2010;44:9024–9.Tortajada-Genaro LA, Santiago-Felipe S, Morais S, Gabaldón JA, Puchades R, Maquieira A. J Agric Food Chem. 2012;60:36–43.Bañuls MJ, Gonzalez-Pedro V, Puchades R, Maquieira A. Anal Methods. 2012;4:3133–9.Avella-Oliver M, Gimenez-Romero D, Morais S, Gonzalez-Martinez MA, Bueno PR, Puchades R, et al. Chem Commun. 2013;49:10868–70.Morais S, Maquieira A, Puchades R, Tortajada-Genaro LA. Patent WO2013/135933 A1Ramachandraiah H, Amasia M, Cole J, Sheard P, Pickhaver S, Walker C, et al. Lab Chip. 2013;13:1578–85.Arandis-Chover T, Morais S, Gonzalez-Martinez MA, Puchades R, Maquieira A. Biosens Bioelectron. 2014;51:109–14.Avella-Oliver M, Morais S, Carrascosa J, Puchades R, Maquieira A. Anal Chem. 2014;86:12037–46.Avella-Oliver M, Morais S, Carrascosa J, Puchades R, Maquieira A (2015) Patent PCT/ES2015/070060Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira A. Sens Actuators, B. 2014;204:273–81.Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira A. Food Chem. 2015;174:509–15.Tortajada-Genaro LA, Santiago-Felipe S, Amasia M, Russom A, Maquieira A. RSC Adv. 2015;5:29987–95.Zhang L, Wong JXH, Li X, Li Y, Yu HZ. Anal Chem. 2015;87:5062–7.Zhang L, Li X, Li Y, Shi X, Yu HZ. Anal Chem. 2015;87:1896–902.Santiago-Felipe S, Tortajada-Genaro LA, Carrascosa J, Puchades R, Maquieira A. Biosens Bioelectron. 2016;79:300–6.Avella-Oliver M, Morais S, Puchades R, Maquieira A (2015) Trends Anal Chem doi: 10.1016/j.trac.2015.11.02

    Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1

    No full text
    Large-scale production has been the major obstacle to the success of many biopesticides. The spreading of microbial biocontrol agents against postharvest disease, as a safe and environmentally friendly alternative to synthetic fungicides, is quite dependent on their industrial mass production from low-cost raw materials. Considerable interest has been shown in using agricultural waste products and by-products from food industry as nitrogen and carbon sources. In this work, carob pulp aqueous extracts were used as carbon source in the production of the biocontrol agent Pantoea agglomerans PBC-1. Optimal sugar extraction was achieved at a solid/liquid ratio of 1:10 (w/v), at 25°C, for 1 h. Batch experiments were performed in shake flasks, at different concentrations and in stirred reactors at two initial inoculums concentrations, 106 and 107 cfu ml−1. The initial sugar concentration of 5 g l−1 allowed rapid growth (0.16 h−1) and high biomass productivity (0.28 g l−1 h−1) and was chosen as the value for use in stirred reactor experiments. After 22 and 32 h of fermentation the viable population reached was 3.2 × 109 and 6.2 × 109 cfu ml−1 in the fermenter inoculated at 106 cfu ml−1 and 2.7 × 109 and 6.7 × 109 cfu ml−1 in the bioreactor inoculated at 107 cfu ml−1. A 78% reduction of the pathogen incidence was achieved with PBC-1 at 1 × 108 cfu ml−1, grown in medium with carob extracts, on artificially wounded apples stored after 7 days at 25°C against P. expansum
    corecore