9 research outputs found

    Targeting cytosolic proliferating cell nuclear antigen in neutrophil-dominated inflammation.

    Get PDF
    New therapeutic approaches that can accelerate neutrophil apoptosis under inflammatory conditions to enhance the resolution of inflammation are now under study. Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells is a key regulator of neutrophil survival. The nuclear-to-cytoplasmic relocalization occurred during granulocytic differentiation and is dependent on a nuclear export sequence thus strongly suggesting that PCNA has physiologic cytoplasmic functions. In this review, we will try to put into perspective the physiologic relevance of PCNA in neutrophils. We will discuss key issues such as molecular structure, post-translational modifications, based on our knowledge of nuclear PCNA, assuming that similar principles governing its function are conserved between nuclear and cytosolic PCNA. The example of cystic fibrosis that features one of the most intense neutrophil-dominated pulmonary inflammation will be discussed. We believe that through an intimate comprehension of the cytosolic PCNA scaffold based on nuclear PCNA knowledge, novel pathways regulating neutrophil survival can be unraveled and innovative agents can be developed to dampen inflammation where it proves detrimental

    Characterization of cytosolic proliferating cell nuclear antigen (PCNA) in neutrophils: antiapoptotic role of the monomer.

    Get PDF
    We have shown previously that PCNA, a nuclear factor involved in DNA replication and repair in proliferating cells, is localized exclusively in the cytoplasm of neutrophils, where it regulates their survival. Nuclear PCNA functions are tightly linked to its ring-shaped structure, which allows PCNA to bind to numerous partner proteins to orchestrate DNA-related processes. We have shown that only monomeric PCNA can expose its NES to be relocalized from nucleus to cytosol during granulocyte differentiation. This study tested the hypothesis that monomeric PCNA could have a biological role in neutrophils. With the use of a combination of cross-linking and gel-filtration experiments, trimeric and monomeric PCNAs were detected in neutrophil cytosol. The promyelocytic cell line PLB985 was next stably transfected to express the monomeric PCNAY114A mutant to examine its function compared with the WT trimeric PCNA. Monomeric PCNAY114A mutant potentiated DMF-induced differentiation, as evidenced by an increased percentage of CD11b- and gp91phox-positive PLB985PCNAY114A cells and by an increased, opsonized zymosan-triggered NADPH oxidase activity compared with PLB985PCNA or PLB985 cells overexpressing WT PCNA or the empty plasmid, respectively. Regarding antiapoptotic activity, DMF-differentiated PLB985 cells overexpressing WT or the monomeric PCNAY114A mutant displayed a similar antiapoptotic activity following treatment with gliotoxin or TRAIL compared with PLB985. The molecular basis through which cytoplasmic PCNA exerts its antiapoptotic activity in mature neutrophils may, at least in part, be independent of the trimeric conformation

    Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide

    Get PDF
    This work was supported by a collaborative project between Unigene Corp. and Queen Mary University of London and by the William Harvey Research Foundation. JD is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant no: 107613/Z/15/Z). MP was supported by the Wellcome Trust (grant no: 086867/Z/08)

    Regulating neutrophil apoptosis: new players enter the game.

    No full text
    Recently, unexpected biological features of polymorphonuclear neutrophils have been revealed. In addition to their pivotal role in the defence against pathogens, neutrophils display a high degree of plasticity and contribute to control of adaptive immune responses. An emerging aspect of neutrophils is their ability to modulate their survival in response to both intrinsic and extrinsic factors. This review focuses on recent advances that have uncovered proliferating cell nuclear antigen (PCNA) and other cell cycle regulatory proteins as novel players regulating neutrophil survival. A better understanding of the mechanisms involved in neutrophil fate might pave the way for the identification of new anti-inflammatory molecules

    Regulating neutrophil apoptosis: new players enter the game

    No full text
    Recently, unexpected biological features of polymorphonuclear neutrophils have been revealed. In addition to their pivotal role in the defence against pathogens, neutrophils display a high degree of plasticity and contribute to control of adaptive immune responses. An emerging aspect of neutrophils is their ability to modulate their survival in response to both intrinsic and extrinsic factors. This review focuses on recent advances that have uncovered proliferating cell nuclear antigen (PCNA) and other cell cycle regulatory proteins as novel players regulating neutrophil survival. A better understanding of the mechanisms involved in neutrophil fate might pave the way for the identification of new anti-inflammatory molecules

    Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    No full text
    International audienceProteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease
    corecore