27 research outputs found

    Impact of rifaximin on the frequency and characteristics of spontaneous bacterial peritonitis in patients with liver cirrhosis and ascites

    Get PDF
    BACKGROUND: Rifaximin is a non-absorbable antibiotic used to prevent relapses of hepatic encephalopathy which may also be a candidate for prophylaxis of spontaneous bacterial peritonitis (SBP). AIM: To detect the impact of rifaximin on the occurrence and characteristics of SBP. METHODS: We prospectively studied all hospitalized patients that underwent a diagnostic paracentesis in our department from March 2012 to April 2013 for SBP and recorded all clinical data including type of SBP prophylaxis, prior use of rifaximin, concomitant complications of cirrhosis, as well as laboratory results and bacteriological findings. Patients were divided into the following three groups: no antibiotic prophylaxis, prophylaxis with rifaximin or with systemically absorbed antibiotic prophylaxis. RESULTS: Our study cohort comprised 152 patients with advanced liver cirrhosis, 32 of whom developed SBP during the study period. As expected, our study groups differed regarding a history of hepatic encephalopathy and SBP before inclusion into the study. None of the 17 patients on systemic antibiotic prophylaxis developed SBP while 8/27 patients on rifaximin and 24/108 without prophylaxis had SBP (p = 0.02 and p = 0.04 versus systemic antibiotics, respectively). In general, episodes of SBP were similar for patients treated with rifaximin and those without any prophylaxis. However, Escherichia coli and enterococci were dominant in the ascites of patients without any prophylaxis, while mostly klebsiella species were recovered from the ascites samples in the rifaximin group. CONCLUSION: Rifaximin pretreatment did not lead to a reduction of SBP occurrence in hospitalized patients with advanced liver disease. However, the bacterial species causing SBP were changed by rifaximin

    Spherical Lactic Acid Bacteria Activate Plasmacytoid Dendritic Cells Immunomodulatory Function via TLR9-Dependent Crosstalk with Myeloid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease

    The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation

    Get PDF
    Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSVA2- GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The Npalmitoylated cystein

    Hookworm infection associates with a vaginal Type 1/Type 2 immune signature and increased HPV load

    No full text
    Helminth infection-driven changes to immunity in the female reproductive tract (FRT) is an immune axis that is currently understudied but can have major implications for the control of FRT infections. Here we address how human hookworm infection associates with vaginal immune profile and risk of Human papillomavirus (HPV) infection. Stool, blood, cervical swabs and vaginal flushes were collected from women from the Central region of Togo to screen for hookworms (Ancylostoma duodenale) and high carcinogenic risk HPV types, via Kato Katz and PCR, respectively. Cytokine, chemokine and immunoglobulin levels were analysed in cervicovaginal lavages and plasma samples. A pronounced mixed Type 1/Type 2 immune response was detected in the vaginal fluids of women with hookworm infection and this immune signature was a notable feature in hookworm-HPV co-infected women. Moreover, hookworm infection is positively associated with increased risk and load of HPV infection. These findings highlight helminth infection as a significant risk factor for acquiring a sexually transmitted viral infection and potentially raising the risk of subsequent pathology
    corecore