97 research outputs found

    Evaluation of ground information with respect to EPB tunnelling for the Thessaloniki metro, Greece

    Get PDF
    Ο Μητροπολιτικός σιδηρόδρομος της Θεσσαλονίκης αποτελείται από δύο παράλληλες σήραγγες διαμέτρου ~6 m και μήκους ~8 km η κάθε μία και περιλαμβάνει 13 σταθμούς. Η γεωλογία του πολεοδομικού συγκροτήματος της Θεσσαλονίκης χαρακτηρίζεται από την παρουσία νεογενών και τεταρτογενών αποθέσεων. Ο κύριος σχηματισμός της περιοχής του έργου είναι μία σειρά πολύ στιφρών έως σκληρών ερυθρών αργίλων ανωμειοκαινικής-πλειοκαινικής ηλικίας. Σχηματισμοί του Τεταρτογενούς που έχουν αποτεθεί πάνω σε αυτές τις αργίλους συνίστανται από αργιλώδεις-ιλυώδεις άμμους ή/και χάλικες. Το πρόγραμμα γεωερευνητικών εργασιών περιελάμβανε έναν σημαντικό αριθμό δειγματοληπτικών γεωτρήσεων, επί τόπου και εργαστηριακών δοκιμών. Τα στοιχεία του γεωερευνητικού προγράμματος αξιολογήθηκαν ώστε να κατανοηθεί καλύτερα το γεωλογικό προσομοίωμα της περιοχής του έργου και να διακριτοποιηθούν ζώνες με βάση τη συμπεριφορά των γεωυλικών κατά τη διάνοιξη της σήραγγας με μηχάνημα ολομέτωπης κοπής (ΤΒΜ). Όσον αφορά το μηχάνημα διάνοιξης, η επιλογή ενός μηχανήματος εδαφικής εξισορροπητικής πίεσης (ΕΡΒΜ) φαίνεται να είναι εύλογη τόσο από πλευράς ευστάθειας όσο και από πλευράς ρυθμού προχώρησης. Η επιλογή αυτή υπαγορεύεται από τα χαρακτηριστικά του εδάφους για την κάλυψη όλων των αντικειμενικών σκοπών όπως ο έλεγχος των καθιζήσεων και εδαφικών μετακινήσεων, η διατήρηση της στάθμης του υπόγειου νερού αλλά και η ικανοποιητική προχώρηση των σηράγγωνThe Thessaloniki Metropolitan Railway comprises two separate ~6 m diameter parallel tunnels with an ~8 km stretch each and 13 stations. The geology of the urban area of Thessaloniki is characterised by the presence of Neogene and Quaternary deposits. The base formation for the project area is a very stiff to hard red clay, dating to Upper Miocene-Pliocene. Upon this formation, Quaternary sediments have been deposited, most of which comprise sand and/or gravel in a clay-silt dominated matrix, covered in places by anthropogenic fill. Ground investigation campaigns incorporated a significant number of sampling boreholes and in situ and laboratory testing. This information was elaborated in order to obtain a better geological understanding and a geotechnical zonation of the ground with respect to mechanized tunnelling. EPB M appears to be the reasonable choice for the project in all aspects of tunnel safety and tunnelling performance. The characteristics and parameters of the soils and the hydrogeological regime directed towards this selection and it is expected that all the objectives, such as settlement and ground movements control, water table level maintenance and adequate performance, will be met by an EPBM provided it is properly operate

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption

    Get PDF
    The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity

    PCNA ubiquitylation ensures timely completion of unperturbed DNA replication in fission yeast

    Get PDF
    PCNA ubiquitylation on lysine 164 is required for DNA damage tolerance. In many organisms PCNA is also ubiquitylated in unchallenged S phase but the significance of this has not been established. Using Schizosaccharomyces pombe, we demonstrate that lysine 164 ubiquitylation of PCNA contributes to efficient DNA replication in the absence of DNA damage. Loss of PCNA ubiquitylation manifests most strongly at late replicating regions and increases the frequency of replication gaps. We show that PCNA ubiquitylation increases the proportion of chromatin associated PCNA and the co-immunoprecipitation of Polymerase δ with PCNA during unperturbed replication and propose that ubiquitylation acts to prolong the chromatin association of these replication proteins to allow the efficient completion of Okazaki fragment synthesis by mediating gap filling

    Gene expression modules in primary breast cancers as risk factors for organotropic patterns of first metastatic spread: a case control study

    Get PDF
    Background Metastases from primary breast cancers can involve single or multiple organs at metastatic disease diagnosis. Molecular risk factors for particular patterns of metastastic spread in a clinical population are limited. Methods A case-control design including 1357 primary breast cancers was used to study three distinct clinical patterns of metastasis, which occur within the first six months of metastatic disease: bone and visceral metasynchronous spread, bone-only, and visceral-only metastasis. Whole-genome expression profiles were obtained using whole genome (WG)-DASL assays from formalin-fixed paraffin-embedded (FFPE) samples. A systematic protocol was developed for handling FFPE samples together with stringent data quality controls to identify robust expression profiling data. A panel of published and novel gene sets were tested for association with these specific patterns of metastatic spread and odds ratios (ORs) were calculated. Results Metasynchronous metastasis to bone and viscera was found in all intrinsic breast cancer subtypes, while immunohistochemically (IHC)-defined receptor status and specific IntClust subgroups were risk factors for visceral-only or bone-only first metastases. Among gene modules, those related to proliferation increased the risk of metasynchronous metastasis (OR (95% CI) = 2.3 (1.1–4.8)) and visceral-only first metastasis (OR (95% CI) = 2.5 (1.2–5.1)) but not bone-only metastasis (OR (95% CI) = 0.97 (0.56–1.7)). A 21-gene module (BV) was identified in estrogen-receptor-positive breast cancers with metasynchronous metastasis to bone and viscera (area under the curve = 0.77), and its expression increased the risk of bone and visceral metasynchronous spread in this population. BV was further orthogonally validated with NanoString nCounter in primary breast cancers, and was reproducible in their matched lymph nodes metastases and an external cohort. Conclusion This case-control study of WG-DASL global expression profiles from FFPE tumour samples, after careful quality control and RNA selection, revealed that gene modules in the primary tumour have differing risks for clinical patterns of metasynchronous first metastases. Moreover, a novel gene module was identified as a putative risk factor for metasynchronous bone and visceral first metastatic spread, with potential implications for disease monitoring and treatment planning

    The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε

    Get PDF
    Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding abilit

    Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.

    Get PDF
    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis
    corecore