767 research outputs found

    Changes in dietary patterns and body composition within 12 months of liver transplantation

    Get PDF
    Background: Cardiometabolic risk factors are increasing in liver transplant recipients (LTR). Influencing dietary factors have not been assessed. The aim of this observational study was to assess changes in weight, metabolic function, dietary intake and eating behaviours in the first year after orthotopic liver transplantation (OLT). Methods: Consecutive recruitment of 17 patients (14 males) awaiting OLT at a single tertiary hospital. Dietary intake, food behaviours and anthropometry were recorded at baseline, and 6 and 12 months posttransplant. Results: By 12 months, patients had gained on average 7.3% of body weight. The prevalence of overweight or obesity increased from baseline 53% to 77% (P=0.001). By 6 months, 65% (n=11/17) of patients had altered glucose metabolism. Dietary intake was consistent with a Western-style dietary pattern with high saturated fat. Over half of the patients (69%, n=11/16) reported low to no depressive feelings and rated their self-esteem as good (53%, n=9/16). The Power of Food Scale increased between pre and post-transplant, indicating a stronger appetitive drive. Conclusions: Weight gain occurs early post-transplant, with significant metabolic dysfunction present within 6 months, however is not associated with significant psychological distress. Early dietary intervention designed to limit weight gain and target cardiometabolic health is recommended for this unique patient population

    Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves

    Get PDF
    Contact-based vibrations play an essential role in the dynamics of granular materials. Significant insights into vibrational granular dynamics have previously been obtained with reduced-dimensional systems containing macroscale particles. We study contact-based vibrations of a two-dimensional monolayer of micron-sized spheres on a solid substrate that forms a microscale granular crystal. Measurements of the resonant attenuation of laser-generated surface acoustic waves reveal three collective vibrational modes that involve displacements and rotations of the microspheres, as well as interparticle and particle-substrate interactions. To identify the modes, we tune the interparticle stiffness, which shifts the frequency of the horizontal-rotational resonances while leaving the vertical resonance unaffected. From the measured contact resonance frequencies we determine both particle-substrate and interparticle contact stiffnesses and find that the former is an order of magnitude larger than the latter. This study paves the way for investigating complex contact-based dynamics of microscale granular crystals and yields a new approach to studying micro- to nanoscale contact mechanics in multiparticle networks.National Science Foundation (U.S.) (Grant CMMI-1333858)United States. Army Research Office (Grant W911NF-15-1-0030)University of Washington. Royalty Research FoundationNational Science Foundation (U.S.) (Grant CHE-1111557

    ‘Back to Life’—Using knowledge exchange processes to enhance lifestyle interventions for liver transplant recipients: A qualitative study

    Get PDF
    Interventions to prevent excessive weight gain after liver transplant are needed. The purpose of the present study was to enhance a specialist post-transplant well-being program through knowledge exchange with end-users.The study used an interactive process of knowledge exchange between researchers, clinicians and health system users. Data were collected as focus groups or telephone interviews and underwent applied thematic analysis.There were 28 participants (age 24-68 years; 64% male). The results identified experiences that may influence decisions around health behaviours during the course of transplant recovery. Three over-arching themes were identified that impact on liver transplant recipients post-transplant health behaviours. These include (i) Finding a coping mechanism which highlighted the need to acknowledge the significant emotional burden of transplant prior to addressing long-term physical wellness; (ii) Back to Life encompassing the desire to return to employment and prioritise family, while co-ordinating the burden of ongoing medical monitoring and self-management and (iii) Tailored, Personalised Care with a preference for health care delivery by transplant specialists via a range of flexible eHealth modalities.This person-centred process of knowledge exchange incorporated experiences of recipients into service design and identified life priorities most likely to influence health behaviours post-transplant. Patient co-creation of services has the potential to improve the integration of knowledge into health systems and future directions will require evaluation of effectiveness and sustainability of patient-centred multidisciplinary service development

    Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome

    Get PDF
    Hutchinson–Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo

    Sigma-2 receptors as a biomarker of proliferation in solid tumours

    Get PDF
    Over the past several years, our group has provided considerable evidence that the expression of sigma-2 (σ2) receptors may serve as a biomarker of tumour cell proliferation. In these in vitro studies, σ2receptors were expressed 8–10 times more in proliferative (P) tumour cells than in quiescent (Q) tumour cells, and the extent and kinetics of their expression were independent of a number of biological, physiological and environmental factors often found in solid tumours. Moreover, the expression of σ2receptors followed both the population growth kinetics when Q-cells were recruited into the P-cell compartment and the proliferative status of human breast tumour cells treated with cytostatic concentrations of tamoxifen. However, these in vitro studies may or may not be indicative of what might occur in solid tumours. In the present study, the σ2receptor P:Q ratio was determined for the cells from subcutaneous 66 (diploid) and 67 (aneuploid) tumours grown in female nude mice. The σ2receptor P:Q ratio of the 66 tumours was 10.6 compared to the σ2receptor P:Q ratio of 9.5 measured for the 66 tissue culture model. The σ2receptor P:Q ratio of the 67 tumours was 4.5 compared to the σ2receptor P:Q ratio of ≈ 8 measured for the 67 tissue culture model. The agreement between the solid tumour and tissue culture data indicates that: (1) the expression of σ2receptors may be a reliable biomarker of the proliferative status of solid tumours and (2) radioligands with both high affinity and high selectivity for σ2receptors may have the potential to non-invasively assess the proliferative status of human solid tumours using imaging techniques such as positron emission tomography or single-photon emission computerized tomography. © 2000 Cancer Research Campaig

    Patients’ quest for recognition and continuity in health care: time for a new research agenda?

    Get PDF
    User involvement is important in democratization of health care and is assumed to contribute to better and more relevant research. Despite increased requirements for user involvement in research, more studies are still needed. This study aimed at exploring what research agenda people with varied health problems consider as important, based on their own experience. The study had a phenomenological approach with a qualitative design. The sample consisted of 23 informants; nine had been critically ill and 14 were suffering from chronic muscle pain. Data were collected in five focus group interviews and one individual interview. A phenomenological approach was used in analyzing the data. Written consent was obtained from all the participants, and ethical considerations were taken throughout the entire research process. Despite various experiences among the participants, a quest to be taken seriously over time by healthcare professionals emerged as a strong meaning structure in both groups. Based on these experiences, continuity across lifetime changes turned out to be an important research topic for future research. User involvement should be appreciated in all parts of the research process. A crucial prerequisite is that the users get the opportunity to bring their own experiences into the process.acceptedVersio

    Vibrational dynamics of a two-dimensional microgranular crystal

    Get PDF
    We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres adhered to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating technique is employed to generate and detect three types of acoustic modes across the entire Brillouin zone in the Γ−K direction: low-frequency contact-based modes of the granular monolayer, high-frequency modes originating from spheroidal vibrations of the microspheres, and surface Rayleigh waves. The dispersion relation of contact-based and spheroidal modes indicates that they are collective modes of the microgranular crystal controlled by particle-particle contacts. We observe a spheroidal resonance splitting caused by the symmetry breaking due to the substrate, as well as an avoided crossing between the Rayleigh and spheroidal modes. The measurements are found to be in agreement with our analytical model.United States. Department of Energy (Grant DE-FG02-00ER15087)National Science Foundation (U.S.) (Grant CHE-1111557

    Conversion of the Mycotoxin Patulin to the Less Toxic Desoxypatulinic Acid by the Biocontrol Yeast Rhodosporidium kratochvilovae Strain LS11

    Get PDF
    Se describe en este artículo el descubrimiento de la degradación de la micotoxina patulina por una levaduraThe infection of stored apples by the fungus Penicillium expansum causes the contamination of fruits and fruit-derived products with the mycotoxin patulin, which is a major issue in food safety. Fungal attack can be prevented by beneficial microorganisms, so-called biocontrol agents. Previous time-course thin layer chromatography analyses showed that the aerobic incubation of patulin with the biocontrol yeast Rhodosporidium kratochvilovae strain LS11 leads to the disappearance of the mycotoxin spot and the parallel emergence of two new spots, one of which disappears over time. In this work, we analyzed the biodegradation of patulin effected by LS11 through HPLC. The more stable of the two compounds was purified and characterized by nuclear magnetic resonance as desoxypatulinic acid, whose formation was also quantitated in patulin degradation experiments. After R. kratochvilovae LS11 had been incubated in the presence of 13C-labeled patulin, label was traced to desoxypatulinic acid, thus proving that this compound derives from the metabolization of patulin by the yeast. Desoxypatulinic acid was much less toxic than patulin to human lymphocytes and, in contrast to patulin, did not react in vitro with the thiol-bearing tripeptide glutathione. The lower toxicity of desoxypatulinic acid is proposed to be a consequence of the hydrolysis of the lactone ring and the loss of functional groups that react with thiol groups. The formation of desoxypatulinic acid from patulin represents a novel biodegradation pathway that is also a detoxification process

    Data-driven Identification of Parametric Governing Equations of Dynamical Systems Using the Signed Cumulative Distribution Transform

    Full text link
    This paper presents a novel data-driven approach to identify partial differential equation (PDE) parameters of a dynamical system. Specifically, we adopt a mathematical "transport" model for the solution of the dynamical system at specific spatial locations that allows us to accurately estimate the model parameters, including those associated with structural damage. This is accomplished by means of a newly-developed mathematical transform, the signed cumulative distribution transform (SCDT), which is shown to convert the general nonlinear parameter estimation problem into a simple linear regression. This approach has the additional practical advantage of requiring no a priori knowledge of the source of the excitation (or, alternatively, the initial conditions). By using training data, we devise a coarse regression procedure to recover different PDE parameters from the PDE solution measured at a single location. Numerical experiments show that the proposed regression procedure is capable of detecting and estimating PDE parameters with superior accuracy compared to a number of recently developed machine learning methods. Furthermore, a damage identification experiment conducted on a publicly available dataset provides strong evidence of the proposed method's effectiveness in structural health monitoring (SHM) applications. The Python implementation of the proposed system identification technique is integrated as a part of the software package PyTransKit (https://github.com/rohdelab/PyTransKit)
    corecore