714 research outputs found
Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice
The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans
What is the Value of Vagueness?
Classically, vagueness has been considered something bad. It leads to the Sorites paradox, borderline cases, and the (apparent) violation of the logical principle of bivalence. Nevertheless, there have always been scholars claiming that vagueness is also valuable. Many have pointed out that we could not communicate as successfully or efficiently as we do if we would not use vague language. Indeed, we often use vague terms when we could have used more precise ones instead. Many scholars (implicitly or explicitly) assume that we do so because their vagueness has a positive function. But how and in what sense can vagueness be said to have a function or value? This paper is an attempt to give an answer to this question. After clarifying the concepts of vagueness and value, it examines nine arguments for the value of vagueness, which have been discussed in the literature. The (negative) result of this examination is, however, that there is not much reason to believe that vagueness has a value or positive function at all because none of the arguments is conclusive. A tenth argument that has not been discussed so far seems most promising but rests on a solely strategic notion of function
Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks
Working memory (WM) deficits are a neuropsychological core finding in patients with schizophrenia and also supposed to be a potential endophenotype of schizophrenia. Yet, there is a large heterogeneity between different WM tasks which is partly due to the lack of process specificity of the tasks applied. Therefore, we investigated WM functioning in patients with schizophrenia using process- and circuit-specific tasks. Thirty-one patients with schizophrenia and 47 controls were tested with respect to different aspects of verbal and visuospatial working memory using modified Sternberg paradigms in a computer-based behavioural experiment. Total group analysis revealed significant impairment of patients with schizophrenia in each of the tested WM components. Furthermore, we were able to identify subgroups of patients showing different patterns of selective deficits. Patients with schizophrenia exhibit specific and, in part, selective WM deficits with indirect but conclusive evidence of dysfunctions of the underlying neural networks. These deficits are present in tasks requiring only maintenance of verbal or visuospatial information. In contrast to a seemingly global working memory deficit, individual analysis revealed differential patterns of working memory impairments in patients with schizophrenia
Pain coping skills training for African Americans with osteoarthritis (STAART): study protocol of a randomized controlled trial
Background: African Americans bear a disproportionate burden of osteoarthritis (OA), with higher prevalence rates, more severe pain, and more functional limitations. One key barrier to addressing these disparities has been limited engagement of African Americans in the development and evaluation of behavioral interventions for management of OA. Pain Coping Skills Training (CST) is a cognitive-behavioral intervention with shown efficacy to improve OA-related pain and other outcomes. Emerging data indicate pain CST may be a promising intervention for reducing racial disparities in OA symptom severity. However, there are important gaps in this research, including incorporation of stakeholder perspectives (e.g. cultural appropriateness, strategies for implementation into clinical practice) and testing pain CST specifically among African Americans with OA. This study will evaluate the effectiveness of a culturally enhanced pain CST program among African Americans with OA.
Methods/Design: This is a randomized controlled trial among 248 participants with symptomatic hip or knee OA, with equal allocation to a pain CST group and a wait list (WL) control group. The pain CST program incorporated feedback from patients and other stakeholders and involves 11 weekly telephone-based sessions. Outcomes are assessed at baseline, 12Â weeks (primary time point), and 36Â weeks (to assess maintenance of treatment effects). The primary outcome is the Western Ontario and McMaster Universities Osteoarthritis Index, and secondary outcomes include self-efficacy, pain coping, pain interference, quality of life, depressive symptoms, and global assessment of change. Linear mixed models will be used to compare the pain CST group to the WL control group and explore whether participant characteristics are associated with differential improvement in the pain CST program. This research is in compliance with the Helsinki Declaration and was approved by the Institutional Review Boards of the University of North Carolina at Chapel Hill, Durham Veterans Affairs Medical Center, East Carolina University, and Duke University Health System.
Discussion: This culturally enhanced pain CST program could have a substantial impact on outcomes for African Americans with OA and may be a key strategy in the reduction of racial health disparities.Funded by Patient-Centered Outcomes Research Institute (PCORI) Award (AD-1408-19519)
The effects of antipsychotic medications on emotion perception in patients with chronic schizophrenia in the CATIE trial
AbstractFew pharmacological intervention studies have examined the impact of medication on social cognition, particularly emotion perception. The goal of this randomized, double-blind study is to compare the effects of several second generation antipsychotics and a first generation antipsychotic, perphenazine, on emotion perception in individuals with schizophrenia. Patients were assigned to receive treatment with olanzapine, queitapine fumarate, risperidone, ziprasidone or perphenazine for up to 18months. Eight hundred and seventy three patients completed an emotion perception test immediately prior to randomization and after 2months of treatment. We also examined baseline predictors of emotion perception change. Most treatments were associated with a small, non-statistically significant improvement in emotion perception at two months, although they did not differ from one another. Greater improvement in emotion perception at 2months was significantly predicted by lower baseline emotion perception and higher baseline neurocognitive functioning, and marginally predicted by less time on an antipsychotic
Efficiency of the CATIE and BACS neuropsychological batteries in assessing cognitive effects of antipsychotic treatments in schizophrenia
Efficient and reliable assessments of cognitive treatment effects are essential for the comparative evaluation of procognitive effects of pharmacologic therapies. Yet, no studies have addressed the sensitivity and efficiency with which neurocognitive batteries evaluate cognitive abilities before and after treatment. Participants were primarily first episode schizophrenia patients who completed baseline (n = 367) and 12-week (n = 219) assessments with the BACS (Brief Assessment of Cognition in Schizophrenia) and CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) neuropsychological batteries in a clinical trial comparing olanzapine, quetiapine, and risperidone. Exploratory factor analysis revealed that performance on both batteries was characterized by a single factor of generalized cognitive deficit for both baseline performance and cognitive change after treatment. Both batteries estimated similar levels of change following treatment, although the BACS battery required half the administration time. Because a unitary factor characterized baseline cognitive abilities in early psychosis as well as cognitive change after treatment with atypical antipsychotic medications, short batteries such as the BACS may efficiently provide sufficient assessment of procognitive treatment effects with antipsychotic medications. Assessment of cognitive effects of adjunctive therapies targeting specific cognitive domains or impairments may require more extensive testing of the domains targeted to maximize sensitivity for detecting specific predicted cognitive outcomes
Dissipative Chaos in Semiconductor Superlattices
We consider the motion of ballistic electrons in a miniband of a
semiconductor superlattice (SSL) under the influence of an external,
time-periodic electric field. We use the semi-classical balance-equation
approach which incorporates elastic and inelastic scattering (as dissipation)
and the self-consistent field generated by the electron motion. The coupling of
electrons in the miniband to the self-consistent field produces a cooperative
nonlinear oscillatory mode which, when interacting with the oscillatory
external field and the intrinsic Bloch-type oscillatory mode, can lead to
complicated dynamics, including dissipative chaos. For a range of values of the
dissipation parameters we determine the regions in the amplitude-frequency
plane of the external field in which chaos can occur. Our results suggest that
for terahertz external fields of the amplitudes achieved by present-day free
electron lasers, chaos may be observable in SSLs. We clarify the nature of this
novel nonlinear dynamics in the superlattice-external field system by exploring
analogies to the Dicke model of an ensemble of two-level atoms coupled with a
resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure
Do Natural Proteins Differ from Random Sequences Polypeptides? Natural vs. Random Proteins Classification Using an Evolutionary Neural Network
Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA) in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity). The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random
- …