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Abstract 

Ochola, D. O., Sharif, R., Bedford, J. S., Keefe, T. J., Kato, T. A., Fallgren C. M., Demant, P. 

and Weil, M. M. 

 

Persistence of -H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to 

Radiation Associated Lung Cancer in Mice 

 

The risk of developing radiation-induced lung cancer differs between different strains of mice, 

but the underlying cause of the strain differences is unknown.  Strains of mice also differ in their 

ability to efficiently repair DNA double strand breaks resulting from radiation exposure.  We 

phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy 

in repairing DNA double strand breaks during protracted radiation exposures.  We monitored 

persistent -H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays 

as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem 

strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, 

P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence 

measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains 

also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results 

suggest that genetic differences in DNA repair capacity largely account for differing 

susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high 

levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition.  In 

a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes 
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also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such 

phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.   
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INTRODUCTION 

 

Radiation exposure carries with it an increased risk for lung cancer.  This increased risk has been 

observed in atomic bomb survivors (1) and in cohorts with medical (2) (NCRP No 170, section 

9.4), occupational, and environmental radiation exposures (3).  Radiation-induced lung cancer 

remains a concern for diagnostic radiology and radiotherapy patients, and the risk of radiogenic 

lung cancer is a factor in limiting flight times for spaceflight crew members (4).  There is some 

evidence for genetic susceptibility to radiogenic lung cancer in humans (5, 6), but the relative 

contributions of the pathways through which naturally occurring genomic sequence variants are 

manifested (e.g., DNA repair, apoptosis, EGFR signaling) are unknown.   

 

Inbred mouse strains differ in their susceptibilities to radiogenic cancers, including lung cancer 

(7), and these strain differences in susceptibility are likely due to genetic differences between 

strains.  The CcS/Dem recombinant congenic strain set consists of 20 inbred strains (CcS1 

through CcS20) derived from the BALB/cHeA and STS/A founder strains (8, 9).  Each CcS/Dem 

strain is genetically distinct and has approximately 87.5 percent of its genome derived from the 

BALB/c founder and the remainder from STS/A.  The strains have been phenotyped for their 

incidences of radiation-induced lung cancers and hematopoietic malignancies, and vary 

considerably in their susceptibilities to both (9). 

 

Ionizing radiation induces DNA double strand breaks (DSB), and the misrepair of these lesions 

can contribute to carcinogenesis.  Individuals differ in their capacity to efficiently repair DNA 

DSB and there are also differences in repair efficiencies between mouse strains.  It has been 20 
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years since the discovery that the histone variant H2AX was specifically modified only at sites of 

DSBs (1), giving rise to immunofluorescent techniques and a quantitative surrogate marker for 

radiation-induced DSBs in eukaryotic cells (2). Capitalizing on such discovery, we previously 

introduced a sensitive assay reflecting the repair efficacy of radiation-induced DNA DSB based 

on evaluating the persistence of γ-H2AX foci in cells irradiated at low dose rate, the LDR γ-

H2AX assay (10).  In this latter work, we showed that the assay was able to identify individuals 

with hypersensitivity radiation induced G(1) arrest and cell killing later linked to DNA repair 

differences among clinically normal individuals (10).  Here, we phenotype the CcS/Dem strains 

for their DNA DSB break repair efficiencies using the same LDR -H2AX assay and compare 

the results to those previously obtained for their susceptibilities to radiogenic lung cancer as 

described in the original study (9). We find a strong correlation between the strain differences in 

susceptibility to radiation associated lung cancer and the persistence of -H2AX foci in irradiated 

bronchial epithelial cells.   The correlation extends to the baseline damage in un-irradiated 

bronchial epithelial cells for all strains as well as in leucocytes from irradiated animals from a 

smaller cohort conducted at Colorado State University.  Within the CcS/Dem strain set, 

genetically determined differences in DNA DSB repair account for most of the differences 

between strains in radiogenic lung cancer incidence.  This finding suggests that assays to predict 

individual susceptibility to radiation-induced lung cancers can be developed around the usage of 

both baseline levels of DNA damage and persistence of damage in irradiated samples. 

 

MATERIALS AND METHODS 

 

Mice   
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Female CcS/Dem and BALB/cHeA mice were assayed at 11 to 15 weeks of age.  All animal 

work followed American Association for Laboratory Animal Science policies and was approved 

by the Colorado State University Institutional Animal Care and Use Committee under protocol 

09-1582A. 

 

Irradiation   

Mice were irradiated with 137Cs -rays at a dose rate of 10 cGy/h for 24 h to a cumulative dose of 

2.4 Gy. During irradiation the mice were housed in ventilated 5x5x8 cm polystyrene boxes with 

a cube of Nutra-Gel (Bio Serv, Flemington, NJ) for food and hydration.  Sham-irradiated mice 

that served as controls were treated under similar conditions, but without the 137Cs source being 

exposed.  

 

Tissue collection 

Mice were euthanized immediately following irradiation and their lungs were perfused in situ.  

Fixed lung tissue was paraffin embedded and sectioned for H2AX foci detection by 

immunofluorescence.  For foci detection in peripheral blood mononuclear cells, heparinized 

blood was collected by cardiac puncture, and erythrocytes lysed with distilled water.  The 

leucocytes were then deposited onto slides, and fixed (detailed methods in Supplemental 

Methods). 

 

Immunofluorescence staining and quantitation of foci 

Paraffin embedded samples were de-waxed and re-hydrated by the standard method followed by 

antigen retrieval with sodium citrate and microwave (11). Leucocyte samples were treated with 
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sodium borohydride solution to reduce autofluorescence background signals (12).  Slides were 

stained by anti-gamma-H2AX antibody (Millipore) and Alexa Fluor 594 conjugated secondary 

antibody, and counter stained by DAPI. 

  

Extended focus images were obtained by Nikon E600 fluorescence motorized microscope with 

CoolSNAP HQ camera controlled by Optiscan stage system (Prior Photometrics, Tuscon, AZ) 

and MetaMorph Software (Molecular Devices, Sunnyvale, CA).  Visual counting was performed 

to quantify the foci number per cell.  Cells with diffuse H2AX staining suggestive of apoptosis 

were excluded from counted.  

 

Data analysis 

Summary statistics, which included the number of mice (n) per strain and the mean and standard 

deviation (StDev) of the foci counts weighted by the number of cells counted per mouse by 

observer 1 or observer 2 (102.2 ± 1.6 and 80.8 ± 39.4, respectively), were calculated using 

Release 17 of the statistical package Minitab (State College, PA).  The Pearson correlation 

coefficient was calculated for the relationship between DNA repair efficiency (as measured by 

the mean number of foci per nucleus) and the incidence of radiation associated lung tumors using 

GraphPad Prism software (San Diego, CA).   

 

RESULTS 

 

It was previously shown that CcS/Dem strains and their BALB/cHeA and STS/A founder strains 

differ in their susceptibilities to radiogenic lung cancer, lymphomas, and leukemias (9).  In that 
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study, mice of both sexes were irradiated to the whole body with four 1.5 Gy weekly fractions 

and monitored until they became moribund or reached 450 days of age.  The incidences of lung 

cancer in the strains, originally reported in Szymanska et al (9), are provided in Table 1.  

 

We considered the possibility that strain differences in the efficacy of DNA DSB repair might 

account for the strain differences in radiogenic lung cancer susceptibility.  To quantify DNA 

DSB repair efficacy we used the low dose rate -H2AX assay we have described previously (10, 

13, 14).  This assay measures differences in the DNA DSB repair capacities of cells by 

irradiating them at low dose rate over 24 hours, a condition which results in the greater 

accumulation of DSB in those cells that have less efficient DNA DSB repair. The DNA DSB 

remaining in the cells immediately following the 24 hour exposure are quantified as -H2AX 

foci.  Presumably, greater numbers of persistent foci indicate less efficient repair.  Our previous 

work has been focusing on irradiating cells in vitro with this assay.  However, since the target 

cells for radiogenic lung cancer are thought to be bronchial epithelial cells, in this work we 

irradiated live mice from 17 of the CcS/Dem strains and the BALB/cHeN founder strain at low 

dose rate for 24 hours, instead.  Immediately following irradiation, the mice were euthanized, 

their lungs perfused with fixative to stop further DNA damage-related processing, and the -

H2AX foci in their bronchial epithelial cells were detected by immunohistochemistry of paraffin 

embedded sections.   

 

The foci were not uniformly distributed among the cell types in the lung.  More -H2AX foci 

formed in the epithelial cells of the conducting airways (comprising the bronchi and bronchioles) 

than in the respiratory airways (the alveoli).  Within the conducting airways more foci formed in 
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basal calls than in apical cells of the epithelium (Figure 1). As previously noted by Rübe and 

colleagues (13), there were also fewer foci formed in the stromal cell nuclei in the parenchyma 

of the lung in irradiated mice.  We counted foci in bronchial epithelial cells and found 

considerable differences between the strains (Figure 2).  Since the bronchial epithelial cells are 

identified histologically by their positions within the tissue, our computer algorithms (3-5) could 

not be used here and we had to rely on human counts. As we reviewed extensively in the past 

(6), manual foci counting can be affected by large inter-observer variability.  To account for this, 

foci were counted by two different individuals, both blinded to the lung cancer incidence in the 

different strains.   

 

Background levels of foci per nucleus in the bronchial epithelial cells of unirradiated mice (two 

mice assayed per strain) were low, about 3 for BALB/c and about 1.5 for the CcS strains.  The 

numbers of foci per nucleus were higher in irradiated mice (4 mice assayed per strain, with the 

exception of CcS/Dem13 for which only 3 mice were available), and differed considerably 

between strains (Table 2).   To determine if strains with less efficient repair were at greater risk 

for radiogenic lung cancer, we computed the Pearson’s correlation between average lung cancer 

incidence for each strain (9) with the average number of remaining RIF 24 hour post-exposure.  

Since the RIF data were from female mice, they were compared to lung cancer incidence in 

female mice only.  However, for some strains relatively few female mice were phenotyped for 

lung cancer susceptibility, so a comparison was also made to lung cancer incidence in both sexes 

combined.  The caveat with this approach is that for a number of other radiogenic tumors for 

which larger datasets are available, there are sex differences in incidence.  Strong correlations 

between persistent RIF levels measured in female mice and lung cancer incidence were found by 



10 

 

both observers (R2 = 60.56%, P < 0.001 for the incidence in female mice and R2 = 79.18%, P < 

0.001 for the incidence in both sexes) (Figure 3).  However, the RIF counts of observer 1 were 

more closely correlated with incidence than those of observer 2 (observer 1, R2 = 95.66%, P < 

0.001; observer 2, R2 = 68.52%, P < 0.001 for the correlations with incidence in both sexes). The 

inter-observer difference is likely due to the selection of cells in which to count foci.  

Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation 

with lung cancer incidence in both sexes as measured by observer 1 (R2=32.74%, P =0.013 – 

Figure 3 C). 

 

To determine if strain differences in DNA DSB repair efficiencies in peripheral blood leukocytes 

also correlated with radiogenic lung cancer susceptibility, we undertook a more limited 

experiment in which we irradiated additional BALB/c mice and mice from 4 CcS/Dem strains 

that had high, low and intermediate repair efficiencies in their bronchial epithelial cells.  The foci 

were counted by observer 1 and the results are presented in Table 3.  Although the observer 

attempted to count foci only in lymphocytes based on nuclear morphology, monocytes could not 

be reliably excluded from the counts.  However, monocytes comprise only about 5% percent of 

murine peripheral blood leucocytes compared to about 80% for lymphocytes.  The foci counts 

correlated with lung cancer incidence in female mice (R2 = 86.354%, P = 0.022), though the 

correlation with lung cancer incidence in both sexes was not quite significant (R2 = 75.69%, P = 

0.055) (Figure 4).  The results indicate that the repair capacity in peripheral blood leucocytes is a 

good predictor of radiogenic lung cancer susceptibility in these strains. 

 

DISCUSSION 
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The link between cancer and deficient DNA repair has been extensively documented by others 

(7-10). For example, individuals suffering from the hereditary cancer-prone disease xeroderma 

pigmentosum (XP) were found to have defective DNA Single Stand Break repairs after exposing 

their cells to UV light (11). With respect to the H2AX assay used in this work, one can list 

several studies where the same assay was critical to identify individuals with repair defects such 

as patients with genetic diseases like ataxia telangiectasia (AT), Nijmegen breakage syndrome 

(NBS) (12), xeroderma pigmentosum (XP) (13), Fanconi anemia (FA) (14), and radiation 

sensitive severe combined immunodeficiency (RS-SCID) (15). The most well-known factor 

linking DNA repair to cancer is probably the mutation in breast cancer susceptibility proteins 

type 1 and 2 (BRCA1 and BRCA2) as these two genes are known to play a critical role in DNA 

DSB repair (16). Note that ATM defects that result in persistent RIF (4, 17) are associated with 

radiation-induced carcinogenesis in mice (18), and increased toxicity from radiotherapy in ATM 

heterozygous patients (19, 20). Finally, DNA repair deficiencies are considered risk factors for 

both acute radiation toxicity and cancer, independently of the type of radiation (21-25). The 

sizeable body of work linking DNA repair defects to cancer risks is beyond the scope of this 

work, but one can summarize it with this simple paradigm: defective DNA repair leads to 

genomic instability, which in turn lead to accumulated mutations and potentially cancer. We 

previously proposed mathematical formalism linking DNA repair deficiency to carcinogenesis 

and a more detail review of the literature on the topic can be found there as well (26).  

A major finding which emerges from this study is that most of the variance in 

susceptibility to radiogenic lung cancer in the CcS/Dem strains can be attributed to strain 

differences in DNA DSB repair efficiencies detectable by the LDR -H2AX assay.  The R2 for 

the combined foci counts of both observers in both sexes was 79%, suggesting 79% of the 

variance in lung cancer susceptibility is explained by differences in repair capacity.    Since the 
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mice that comprise the CcS/Dem strain set ultimately trace back to wild populations, an 

implication of this finding is that within these populations naturally occurring differences in 

DNA DSB repair efficiency might underlie interindividual differences in radiogenic lung cancer 

susceptibility.  Might this also be the case for humans?  We have reported differences in repair 

efficiencies in human fibroblasts from different normal donors detected by the LDR -H2AX 

assay, with about a 40% of those screened having relatively inefficient repair. The magnitudes of 

the strain or interindividual differences are comparable between mice and humans (the mean foci 

count in fibroblasts from 15 normal human donors ranged from 4.5 to 11.3 per nucleus; for 

bronchial epithelial cells in the 17 CcS/Dem strains assayed the range was 8.2 to 23.1 foci per 

nucleus) (10). Another finding worth noting is the 33% correlation between baseline γ-H2AX 

foci level in the bronchial epithelial cells from the 20 CcS/Dem strains and their reported cancer 

incidence. This correlation was found to be statistically significant and confirms the concept that 

baseline damage levels in an individual is the net balance between spontaneous damage being 

generated in the tissue and the efficiency of the repair machinery constantly clearing them (26). 

Higher foci level in an individual either reflect exposure to agents damaging DNA and/or slower 

repair. 

 

 

However, a couple of caveats need to be considered in extrapolating our findings to populations 

and to humans.  The first is, obviously, that there are likely to be differences between the 

pathogenesis of radiation-induced lung cancers in mice and humans, so further study will be 

necessary to link repair proficiency with radiogenic lung cancer in humans.  The second is in 

extrapolating the magnitude of an effect determined in a strain set to a general population.  There 

is limited genetic diversity in the CcS/Dem strains.  Since they derive from two inbred founder 

strains there can be at most two alleles for each locus.  So, while differences in susceptibility 

between BALB/c and CcS/Dem strains can be largely or entirely explained by their differing 

repair capacities, there may be other collections of inbred strains that differ in susceptibility due 

to other causes. By extension to humans, differences in DNA DSB repair efficiencies in a 

general population may explain only part of the variance in lung cancer susceptibility. 
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The finding that strain differences in repair efficiency measured in peripheral blood 

leucocytes mirrors those in bronchial epithelial cells and consequently correlate with radiogenic 

lung cancer is not surprising.  We demonstrated that the LDR -H2AX assay distinguished 

individuals with one defective copy of ATM from individuals with two defective copies or two 

normal copies, regardless of whether the assay employed fibroblasts or lymphoblasts (14).  This 

work also reflects that LDR -H2AX assay may be able to identify new genetic variance 

involved in DNA repair and potential cancer risk. A previous study had already suggested such 

findings with RIF repair kinetic assay being sensitive enough to detect subtle genetic differences 

in primary human fibroblast derived from 25 apparently healthy individuals and 10 patients with 

DNA repair-defective syndromes (27). In this work, authors showed clear kinetic differences 

with sick patients but even within the healthy donor, a wide variation in RIF levels and kinetics 

was observed suggesting other unknown factors influencing DNA repair. In mice, Rübe and 

colleagues (15) followed the kinetics of DNA DSB repair in two traditional laboratory mouse 

strains (BALB/c and C57BL/6), a strain engineered with a knockout allele of Atm, and a SCID 

strain with a spontaneous mutation in the gene encoding the catalytic subunit of DNA dependent 

protein kinase (Prkdc).  The latter two strains have profound defects in DNA DSB repair.  They 

observed that the rank order of repair efficiencies between the four strains of mice was the same 

regardless of the tissues assayed (lung, brain, heart or intestine irradiated in vivo and peripheral 

blood lymphocytes irradiated ex vivo). One way to compare directly human and mouse data is 

the usage of blood samples. For example in our study, the baseline level damage for figure 4 was 

XXX which is comparable to the reported 0.5 to 1 foci/cell in adult healthy donors PBL (28, 29).  

Unlike bronchial epithelial cells, peripheral blood cells are readily accessible; so, it should be 

possible to test for a correlation between repair efficiency of peripheral blood lymphocytes 

irradiated ex vivo and radiogenic cancer susceptibility in humans if a suitable cohort could be 

identified. 

 

SUPPLEMENTARY INFORMATION 

Detailed methods or tissue collection, immunofluorescent staining, and foci quantification are 

available as Supplementary Information. 
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Figure 1.  Section of irradiated lung showing many radiation-induced foci formed in the basal 

epithelial cells compared to the apical cells or stromal cells.  
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Figure 2.  Frequency histograms of the number of -H2AX foci per cell in lung basal epithelial 

cells in CcS/Dem strains and BALB/c mice. The more efficient the strain in DSB repair the more 

its histogram will be skewed to the left. 
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Figure 3.  Correlation between repair efficiencies and radiogenic lung cancer incidences in 
BALB/c and CcS/Dem strains.  Repair efficiencies are expressed as foci counts per nucleus in 
the LDR γ-H2AX assay.  To account for inter-observer variability, the foci counts for both 
observers are plotted (■ observer 1, ● observer 2) and the correlation of foci to incidence are 
calculated using all of the data points. 
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Figure 4.  Correlation between repair efficiencies in peripheral blood leucocytes and radiogenic 
lung cancer incidences in BALB/c and CcS/Dem strains, CcS2, CcS3, CcS4 and CcS10.   
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