67 research outputs found

    Metabolic Effects of Krill Oil are Essentially Similar to Those of Fish Oil but at Lower Dose of EPA and DHA, in Healthy Volunteers

    Get PDF
    The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil

    A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus

    Get PDF
    Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications

    Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    Get PDF
    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from &lt;20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 mu m filter. Such cells of &lt;0.22 mu m would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with &gt;86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the &lt;0.22 mu m populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.Supplementary information available for this article at http://www.nature.com/ismej/journal/v10/n5/suppinfo/ismej2015185s1.html</p
    corecore