104 research outputs found

    Cyclosporine A and IFNÎł licencing enhances human mesenchymal stromal cell potency in a humanised mouse model of acute graft versus host disease

    Get PDF
    Immunosuppressive ability in human MSC donors has been shown to be variable and may be a limiting factor in MSC therapeutic efficacy in vivo. The importance of cytokine activation of mesenchymal stromal cells (MSCs) to facilitate their immunosuppressive function is well established. This study sought to further understand the interactions between MSCs and the commonly used calcineurin inhibitor cyclosporine A (CsA). The existing literature regarding approaches that use MSCs and cyclosporine are conflicting regarding the effect of CsA on MSC potency and function. Here, we clearly demonstrate that when added at the same time as MSCs, CsA negatively affects MSC suppression of T cell proliferation. However, licencing MSCs with IFNÎł before addition of CsA protects MSCs from this negative effect. Notably, adding CsA to MSCs after IFNÎł pre-stimulation enhances MSC production of IDO. Mechanistically, we identified that CsA reduces SOCS1 expression to facilitate enhanced IDO production in IFNÎł pre-stimulated MSCs. Importantly, CsA exposure to IFNÎł pre-stimulated MSC before administration, significantly enhanced the potency of MSCs in a human relevant humanised mouse model of acute Graft versus Host Disease. In summary, this study identified a novel licencing strategy to enhance MSC potency in vitro and in vivo

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia

    Get PDF
    The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondria) apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, FED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response

    A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis

    Get PDF
    CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant’ and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold’ to induce death; an observation that is both of fundamental importance and carries implications for cancer therap

    Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

    Get PDF
    The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC

    Hypertonicity counteracts MCL 1 and renders BCL XL a synthetic lethal target in head and neck cancer

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive and difficult‐to‐treat cancer entity. Current therapies ultimately aim to activate the mitochondria‐controlled (intrinsic) apoptosis pathway, but complex alterations in intracellular signaling cascades and the extracellular microenvironment hamper treatment response. On the one hand, proteins of the BCL‐2 family set the threshold for cell death induction and prevent accidental cellular suicide. On the other hand, controlling a cell's readiness to die also determines whether malignant cells are sensitive or resistant to anticancer treatments. Here, we show that HNSCC cells upregulate the proapoptotic BH3‐only protein NOXA in response to hyperosmotic stress. Induction of NOXA is sufficient to counteract the antiapoptotic properties of MCL‐1 and switches HNSCC cells from dual BCL‐XL/MCL‐1 protection to exclusive BCL‐XL addiction. Hypertonicity‐induced functional loss of MCL‐1 renders BCL‐XL a synthetically lethal target in HNSCC, and inhibition of BCL‐XL efficiently kills HNSCC cells that poorly respond to conventional therapies. We identify hypertonicity‐induced upregulation of NOXA as link between osmotic pressure in the tumor environment and mitochondrial priming, which could perspectively be exploited to boost efficacy of anticancer drugs

    A fate worse than death: apoptosis as an oncogenic process

    Full text link
    • 

    corecore