6,669 research outputs found

    Bioremoval of Phenol from Aqueous Solutions Using Native Caribbean Seaweed

    Full text link
    Among several Puerto Rican algae, Sargassum sp. (SG) and Chaetomorpha (CM) showed the highest phenol adsorption capacity from aqueous solutions and were used in optimized adsorption batch experiments at room temperature. The effects of pH, adsorbent dose, phenol concentration, salinity and presence of interfering substances were evaluated. Initial solution pH exhibited a strong effect, mainly on the phenol aqueous chemistry; showing the maximum adsorption at pH 10. Sorption isotherm results were modelled according to the Langmuir, Tempkin and Freundlich equations. Isotherm modelling indicated a maximum adsorption capacity (qmax) of 82.10 and 17.7 mg of phenol per gram of SG and CM, respectively. Salinity and presence of detergent in the matrix solution showed a positive effect on the adsorption, suggesting that adsorption of phenol was mostly driven by polar forces and not by ionic exchange. On the other hand, presence of heavy metals like copper, lead and cobalt had a negative effect on the adsorption. According to these results, the potential formation of hydrogen bonds between the algae and phenol is proposed as the main adsorption mechanism. These results provide further insight into the adsorption mechanism of phenol and their use as inexpensive adsorbents for the treatment of phenol-containing wastewaters

    Flexible membranes anchored to the ground for slope stabilisation: Numerical modelling of soil slopes using SPH

    Get PDF
    An alternative modelling for flexible membranes anchored to the ground for soil slope stabilisation is presented using Smoothed-Particle Hydrodynamics to model the unstable ground mass in a soil slope, employing a dynamic solve engine. A regression model of pressure normal to the ground, qsim, and also membrane deflection, fsim, have been developed using Design of Experiment. Finally, a comparison between the pressure obtained from numerical simulation and from a limit equilibrium analysis considering infinite slope has been carried out, showing differences in the results, mainly due to the membrane stiffness.The realization of this research paper has been possible thanks to the funding of the following entities: SODERCAN (Sociedad para el Desarrollo de Cantabria), ConsejerĂ­a de Obras PĂșblicas del Gobierno de Cantabria, Iberotalud S.L., Malla Talud Cantabria S.L. and Contratas Iglesias S.L. The authors wish also to acknowledge the support provided by the GICONSIME Research Group of the University of Oviedo and the GITECO Research Group of the University of Cantabria. We also thank Swanson Analysis Inc. for the use of the ANSYS Academic program

    Broken R-parity, stop decays, and neutrino physics

    Get PDF
    We discuss the phenomenology of the lightest stop in models where R-parity is broken by bilinear superpotential terms. In this class of models we consider scenarios where the R-parity breaking two-body decay ~t_1->\tau^+b competes with the leading three-body decays such as ~t_1->W^+b~\chi^0_1. We demonstrate that the R-parity violating decay can be sizable and in some parts of the parameter space even the dominant one. Moreover we discuss the expectations for \~t_1->\mu^+b and ~t_1->e^+b. The recent results from solar and atmospheric neutrinos suggest that these are as important as the tau bottom mode. The \~t_1->l^+b decays are of particular interest for hadron colliders, as they may allow a full mass reconstruction of the lighter stop. Moreover these decay modes allow cross checks on the neutrino mixing angle involved in the solar neutrino puzzle complementary to those possible using neutralino decays. For the so--called small mixing angle or SMA solution ~t_1->e^+b should be negligible, while for the large mixing angle type solutions all ~t_1->l^+b decays should have comparable magnitude.Comment: 51 pages, 6 figures, LaTeX2e and RevTeX4, published versio

    Reconciling neutrino anomalies in a simple four-neutrino scheme with R-parity violation

    Get PDF
    We propose a simple extension of the MSSM based on extra compact dimensions which includes an SU(2)⊗U(1)SU(2) \otimes U(1) singlet superfield. The fermion present in this superfield is the sterile neutrino, which combines with one linear combination of Îœe−ΜΌ−Μτ\nu_e-\nu_{\mu}-\nu_{\tau} to form a Dirac pair whose mass accounts for the LSND anomaly. Its small mass can be ascribed to a volume suppression factor associated with extra compact dimensions. On the other hand the sterile neutrino scalar partner can trigger the spontaneous violation of R-parity, thereby inducing the necessary mass splittings to fit also the solar and atmospheric neutrino data. Thus the model can explain all neutrino oscillation data. It leads to four predictions for the neutrino oscillation parameters and implies that the atmospheric neutrino problem must include at least some ΜΌ→Μs\nu_{\mu} \to \nu_s oscillations, which will be testable in the near future. Moreover it also predicts that the lightest supersymmetric particle (LSP) decays visibly via lepton number violating modes, which could be searched for at present and future accelerators.Comment: 15 pages, requires axodraw.sty and elsart.cl

    Searching for R-Parity Violation at Run-II of the Tevatron

    Get PDF
    We present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. We first present a review of the literature and an update of the experimental bounds. In turn we then discuss the following processes: 1. Resonant slepton production followed by R-parity violating decay, (a) via LQDcLQD^c and (b) via LLEcLLE^c. 2. How to distinguish resonant slepton production from Zâ€ČZ' or Wâ€ČW' production. 3. Resonant slepton production followed by the decay to neutralino LSP, which decays via LQDcLQD^c. 4. Resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP. 5. Gluino pair production followed by the cascade decay to charm squarks which decay directly via L1Q2D1cL_1Q_2D^c_1. 6. Squark pair production followed by the cascade decay to the neutralino LSP which decays via L1Q2D1cL_1Q_2D^c_1. 7. MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLEcLLE^c, (b) via LQDcLQD^c, and (c) via UcDcDcU^cD^cD^c, respectively. 8. Top quark and top squark decays in spontaneous R-parity violation.Comment: 39 pages, 51 figures, LaTex, reqires aipproc2.sty and axodraw.sty. To be published in the Physics at Run II Workshop: Supersymmetry/Higgs. Text has been edited by H. Dreiner. Author list on front page has been correcte

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v

    A Dual Role for KRT81: A miR-SNP Associated with Recurrence in Non-Small-Cell Lung Cancer and a Novel Marker of Squamous Cell Lung Carcinoma

    Get PDF
    MicroRNAs (miRNAs) play an important role in carcinogenesis through the regulation of their target genes. miRNA-related single nucleotide polymorphisms (miR-SNPs) can affect miRNA biogenesis and target sites and can alter microRNA expression and functions. We examined 11 miR-SNPs, including 5 in microRNA genes, 3 in microRNA binding sites and 3 in microRNA-processing machinery components, and evaluated time to recurrence (TTR) according to miR-SNP genotypes in 175 surgically resected non-small-cell lung cancer (NSCLC) patients. Significant differences in TTR were found according to KRT81 rs3660 (median TTR: 20.3 months for the CC genotype versus 86.8 months for the CG or GG genotype; P = 0.003) and XPO5 rs11077 (median TTR: 24.7 months for the AA genotype versus 73.1 months for the AC or CC genotypes; P = 0.029). Moreover, when patients were divided according to stage, these differences were maintained for stage I patients (P = 0.002 for KRT81 rs3660; P<0.001 for XPO5 rs11077). When patients were divided into sub-groups according to histology, the effect of the KRT81 rs3660 genotype on TTR was significant in patients with squamous cell carcinoma (P = 0.004) but not in those with adenocarcinoma. In the multivariate analyses, the KRT81 rs3660 CC genotype (OR = 1.8; P = 0.023) and the XPO5 rs11077 AA genotype (OR = 1.77; P = 0.026) emerged as independent variables influencing TTR. Immunohistochemical analyses in 80 lung specimens showed that 95% of squamous cell carcinomas were positive for KRT81, compared to only 19% of adenocarcinomas (P<0.0001). In conclusion, miR-SNPs are a novel class of SNPs that can add useful prognostic information on the clinical outcome of resected NSCLC patients and may be a potential key tool for selecting high-risk stage I patients. Moreover, KRT81 has emerged as a promising immunohistochemical marker for the identification of squamous cell lung carcinoma

    Testing neutrino mixing at future collider experiments

    Get PDF
    Low energy supersymmetry with bilinear breaking of R-parity leads to a weak-scale seesaw mechanism for the atmospheric neutrino scale and a radiative mechanism for the solar neutrino scale. The model has striking implications for collider searches of supersymmetric particles. Assuming that the lightest SUSY particle is the lightest neutralino we demonstrate that (i) The neutralino decays inside the detector even for tiny neutrino masses. (ii) Measurements of the neutrino mixing angles lead to predictions for the ratios of various neutralino branching ratios implying an independent test of neutrino physics at future colliders, such as the Large Hadron Collider or a Linear Collider.Comment: LaTex, 35 pages, 20 figures included, version 2, section on model shortened, Fig. 13 replaced, typos corrected, version to appear in Phys.Rev.
    • 

    corecore