99 research outputs found

    The influence of droplet size on line tension

    Full text link
    Within the effective interfacial Hamiltonian approach we evaluate the excess line free energy associated with cylinder-shaped droplets sessile on a stripe-like chemical inhomogeneity of a planar substrate. In the case of short-range intermolecular forces the droplet morphology and the corresponding expression for the line tension - which includes the inhomogeneity finite width effects - are derived and discussed as functions of temperature and increasing width. The width-dependent contributions to the line tension change their structure at the stripe wetting temperature T_W1: for T<T_W1 they decay exponentially while for T>T_W1 the decay is algebraic. In addition, a geometric construction of the corresponding contact angle is carried out and its implications are discussed

    Formation of capillary bridges in AFM-like geometry

    Full text link
    We discuss the phase diagram of fluid confined in AFM-like geometry. It combines the properties of capillary condensation and complete filling of a wedge.Comment: 9 pages, 7 figure

    The influence of line tension on the formation of liquid bridges

    Full text link
    The formation of liquid bridges between a planar and conical substrates is analyzed macroscopically taking into account the line tension. Depending on the value of the line tension coefficient \tau and geometric parameters of the system one observes two different scenarios of liquid bridge formation upon changing the fluid state along the bulk liquid-vapor coexistence. For \tau > \tau * (\tau * < 0) there is a first-order transition to a state with infinitely thick liquid bridge. For \tau < \tau * the scenario consists of two steps: first there is a first-order transition to a state with liquid bridge of finite thickness which upon further increase of temperature is followed by continuous growth of the thickness of the bridge to infinity. In addition to constructing the relevant phase diagram we examine the dependence of the width of the bridge on thermodynamic and geometric parameters of the system.Comment: 4 pages, 5 figure

    The problem of uniqueness in the reduced description of adsorption on the wedge-shaped substrate

    Full text link
    In the reduced one-dimensional description of the adsorption on the wedge-shaped substrate the mid-point interface height serves as the order parameter. We point at the ambiguity which appears in the transfer-matrix approach to this problem. We also propose how to avoid this problem by introducing the appropriate order parameter.Comment: 7 pages, 4 Postscript figures, uses psfrag.sty; double reference remove

    Phase Transitions in Multicomponent String Model

    Full text link
    We propose a one-dimensional model of a string decorated with adhesion molecules (stickers) to mimic multicomponent membranes in restricted geometries. The string is bounded by two parallel walls and it interacts with one of them by short range attractive forces while the stickers are attracted by the other wall. The exact solution of the model in the case of infinite wall separation predicts both continuous and discontinuous transitions between phases characterised by low and high concentration of stickers on the string. Our model exhibits also coexistence of these two phases, similarly to models of multicomponent membranes.Comment: letter, 8 pages, 3 figure

    Free energy asymptotics of the quantum Heisenberg spin chain

    Get PDF
    We consider the ferromagnetic quantum Heisenberg model in one dimension, for any spin S≥1/2. We give upper and lower bounds on the free energy, proving that at low temperature it is asymptotically equal to the one of an ideal Bose gas of magnons, as predicted by the spin-wave approximation. The trial state used in the upper bound yields an analogous estimate also in the case of two spatial dimensions, which is believed to be sharp at low temperature

    Interfacial fluctuations near the critical filling transition

    Full text link
    We propose a method to describe the short-distance behavior of an interface fluctuating in the presence of the wedge-shaped substrate near the critical filling transition. Two different length scales determined by the average height of the interface at the wedge center can be identified. On one length scale the one-dimensional approximation of Parry et al. \cite{Parry} which allows to find the interfacial critical exponents is extracted from the full description. On the other scale the short-distance fluctuations are analyzed by the mean-field theory.Comment: 13 pages, 3 figure

    Complete Wetting of Pits and Grooves

    Full text link
    For one-component volatile fluids governed by dispersion forces an effective interface Hamiltonian, derived from a microscopic density functional theory, is used to study complete wetting of geometrically structured substrates. Also the long range of substrate potentials is explicitly taken into account. Four types of geometrical patterns are considered: (i) one-dimensional periodic arrays of rectangular or parabolic grooves and (ii) two-dimensional lattices of cylindrical or parabolic pits. We present numerical evidence that at the centers of the cavity regions the thicknesses of the adsorbed films obey precisely the same geometrical covariance relation, which has been recently reported for complete cone and wedge filling. However, this covariance does not hold for the laterally averaged wetting film thicknesses. For sufficiently deep cavities with vertical walls and close to liquid-gas phase coexistence in the bulk, the film thicknesses exhibit an effective planar scaling regime, which as function of undersaturation is characterized by a power law with the common critical exponent -1/3 as for a flat substrate, but with the amplitude depending on the geometrical features.Comment: 12 page
    corecore