58 research outputs found

    In vivo investigation of hyperpolarized [1,3-13C2]acetoacetate as a metabolic probe in normal brain and in glioma.

    Get PDF
    Dysregulation in NAD+/NADH levels is associated with increased cell division and elevated levels of reactive oxygen species in rapidly proliferating cancer cells. Conversion of the ketone body acetoacetate (AcAc) to β-hydroxybutyrate (β-HB) by the mitochondrial enzyme β-hydroxybutyrate dehydrogenase (BDH) depends upon NADH availability. The β-HB-to-AcAc ratio is therefore expected to reflect mitochondrial redox. Previous studies reported the potential of hyperpolarized 13C-AcAc to monitor mitochondrial redox in cells, perfused organs and in vivo. However, the ability of hyperpolarized 13C-AcAc to cross the blood brain barrier (BBB) and its potential to monitor brain metabolism remained unknown. Our goal was to assess the value of hyperpolarized [1,3-13C2]AcAc in healthy and tumor-bearing mice in vivo. Following hyperpolarized [1,3-13C2]AcAc injection, production of [1,3-13C2]β-HB was detected in normal and tumor-bearing mice. Significantly higher levels of [1-13C]AcAc and lower [1-13C]β-HB-to-[1-13C]AcAc ratios were observed in tumor-bearing mice. These results were consistent with decreased BDH activity in tumors and associated with increased total cellular NAD+/NADH. Our study confirmed that AcAc crosses the BBB and can be used for monitoring metabolism in the brain. It highlights the potential of AcAc for future clinical translation and its potential utility for monitoring metabolic changes associated with glioma, and other neurological disorders

    In vivo metabolic imaging of Traumatic Brain Injury.

    Get PDF
    Complex alterations in cerebral energetic metabolism arise after traumatic brain injury (TBI). To date, methods allowing for metabolic evaluation are highly invasive, limiting our understanding of metabolic impairments associated with TBI pathogenesis. We investigated whether 13C MRSI of hyperpolarized (HP) [1-13C] pyruvate, a non-invasive metabolic imaging method, could detect metabolic changes in controlled cortical injury (CCI) mice (n = 57). Our results show that HP [1-13C] lactate-to-pyruvate ratios were increased in the injured cortex at acute (12/24 hours) and sub-acute (7 days) time points after injury, in line with decreased pyruvate dehydrogenase (PDH) activity, suggesting impairment of the oxidative phosphorylation pathway. We then used the colony-stimulating factor-1 receptor inhibitor PLX5622 to deplete brain resident microglia prior to and after CCI, in order to confirm that modulations of HP [1-13C] lactate-to-pyruvate ratios were linked to microglial activation. Despite CCI, the HP [1-13C] lactate-to-pyruvate ratio at the injury cortex of microglia-depleted animals at 7 days post-injury remained unchanged compared to contralateral hemisphere, and PDH activity was not affected. Altogether, our results demonstrate that HP [1-13C] pyruvate has great potential for in vivo non-invasive detection of cerebral metabolism post-TBI, providing a new tool to monitor the effect of therapies targeting microglia/macrophages activation after TBI

    Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice.

    Get PDF
    Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation

    Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.

    Get PDF
    The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input.journal articleresearch support, non-u.s. gov't2015 Mar 11importe

    Cortical glutamate and gamma-aminobutyric acid over the course of a provoked migraine attack, a 7 Tesla magnetic resonance spectroscopy study

    Get PDF
    Enhanced activity of the glutamatergic system has been linked to migraine pathophysiology. The present study aimed to assess the involvement of the glutamatergic system in the onset of attacks. We provoked attacks by infusion of glyceryl trinitrate (GTN; 0.5 µg/kg/min over 20 min) in 24 female episodic migraineurs without aura and 13 female age-matched healthy controls. Over the course of a single day participants were scanned three times at fixed time slots (baseline before GTN infusion, 90 min and 270 min after start of GTN infusion). Single-volume proton magnetic resonance spectra (1H–MRS) were acquired at 7 Tesla from a volume of interest (VOI, 2x2x3 cm) in the visual cortex. We assessed the concentrations of glutamate, its major precursor glutamine, and its product gamma-aminobutyric acid (GABA) over the course of a provoked attack. The preictal state was defined as the period after GTN infusion until the migraine-like headache started, independent of possible experienced premonitory symptoms, and the ictal state was defined as the period with provoked migraine-like headache. Data were analyzed using a linear mixed-effect model for repeated measures. Glutamate and glutamine levels did not change from interictal to the preictal and ictal state. GABA levels increased from interictal towards the preictal state for migraine patients compared with healthy controls. We conclude that high resolution 7T MRS is able to show changes in the glutamatergic system towards a triggered migraine attack, by revealing an increased GABA concentration associated with the onset of a migraine attack

    Regulation of Spike Timing-Dependent Plasticity of Olfactory Inputs in Mitral Cells in the Rat Olfactory Bulb

    Get PDF
    The recent history of activity input onto granule cells (GCs) in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON) inputs to mitral cells (MCs). Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs) with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP) was achieved by the regulation of the inter-spike-interval (ISI) of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb

    MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy

    No full text
    Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management
    • …
    corecore