127 research outputs found

    Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression

    Get PDF
    Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes

    Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System

    Get PDF
    Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies

    Secondary zoonotic dog-to-human transmission of SARS-CoV-2 suggested by timeline but refuted by viral genome sequencing

    Full text link
    Purpose: The risk of secondary zoonotic transmission of SARS-CoV-2 from pet animals remains unclear. Here, we report on a 44 year old Caucasian male presenting to our clinic with COVID-19 pneumonia, who reported that his dog displayed respiratory signs shortly prior to his infection. The dog tested real-time-PCR (RT-PCR) positive for SARS-CoV-2 RNA and the timeline of events suggested a transmission from the dog to the patient. Methods: RT-PCR and serological assays were used to confirm SARS-CoV-2 infection in the nasopharyngeal tract in the dog and the patient. We performed SARS-CoV-2-targeted amplicon-based next generation sequencing of respiratory samples from the dog and patient for sequence comparisons. Results: SARS-CoV-2 infection of the dog was confirmed by three independent PCR-positive pharyngeal swabs and subsequent seroconversion. Sequence analysis identified two separate SARS-CoV-2 lineages in the canine and the patient’s respiratory samples. The timeline strongly suggested dog-to-human transmission, yet due to the genetic distance of the canine and the patient’s samples paired-transmission was highly unlikely. Conclusion: The results of this case support current knowledge about the low risk of secondary zoonotic dog-to-human transmissions of SARS-CoV-2 and emphasizes the strength of genomic sequencing in deciphering viral transmission chains

    Recovery of effective hiv-specific cd4+ t-cell activity following antiretroviral therapy in paediatric infection requires sustained suppression of viraemia

    Get PDF
    Background The success of increasing access to antiretroviral therapy (ART) in paediatric HIV infection prompts the question of the potential for eradication of HIV infection in this age group. ‘Shock-and-kill’ HIV cure approaches, currently in development, may depend upon an effective antiviral T-cell response to eradicate virus-infected cells. Method We here investigate the ability of HIV-infected children receiving ART from early childhood (median 24 months’ age) to generate effective HIV-specific CD4þ and CD8þ T-cell immune responses thatwould facilitate future immune-based cure therapies. Results Initial analysis of ART-naive HIV-infected children demonstrated that maintenance of normal-for-age absolute CD4þ T-cell counts was strongly linked to high IL-2 production and polyfunctional HIV-specific CD4þ T-cell responses (P<0.0001 in each case). Low viral load was, similarly, strongly associated with markedly low IFN-g and high IL-2 HIV-specific CD4þ T-cell responses (P<0.0001). In children receiving ART, establishment of this immune profile (high IL-2 and low IFN-g HIV-specific T-cell production) was strongly related to the duration of viraemic suppression. Failure to suppress viraemia on ART, and even the successful suppression of viraemia interrupted by the occurrence of transient viraemia of more than 1000 HIV copies/ml, was associated with an immune profile of high IFN-g and low IL-2 HIV-specific T-cell responses and low polyfunctionality. Conclusion These data are consistent with recovery of functional CD4þ T-cell responses in ART-treated children, in contrast to relative lack of CD4þ T-cell function recovery described in ART-treated adults. However, the challenges of achieving longterm suppression of viraemia in ART-treated children through adolescence remain daunting

    Early initiation of antiretroviral therapy following in utero HIV infection is associated with low viral reservoirs but other factors determine subsequent plasma viral rebound

    Get PDF
    BACKGROUND: Early HIV diagnosis allows combination antiretroviral therapy (cART) initiation in the first days of life following in utero (IU) infection. The impact of early cART initiation on infant viral reservoir size in the setting of high-frequency cART non-adherence is unknown. METHODS: Peripheral blood total HIV DNA from 164 early treated (day 0-21 of life) IU HIV-infected South African infants was measured using droplet digital PCR at birth and following suppressive cART. We evaluated the impact of cART initiation timing on HIV reservoir size and decay, and on the risk of subsequent plasma viraemia in cART-suppressed infants. FINDINGS: Baseline HIV DNA (median 2.8 log10 copies/million PBMC, range 0.7 - 4.8) did not correlate with age at cART initiation (0-21 days) but instead with maternal antenatal cART use. In 98 infants with plasma viral suppression on cART, HIV DNA half-life was 28 days. However, the probability of maintenance of plasma aviraemia was low (0.46 at 12 months) and not influenced by HIV DNA load. Unexpectedly, longer time to viral suppression was associated with protection against subsequent viral rebound. CONCLUSIONS: With effective prophylaxis against mother-to-child transmission, cART initiation timing in the first 3 weeks of life is not critical to reservoir size

    Increased Regulatory T-Cell Activity and Enhanced T-Cell Homeostatic Signaling in Slow Progressing HIV-infected Children

    Get PDF
    Pediatric slow progressors (PSP) are rare ART-naïve, HIV-infected children who maintain high CD4 T-cell counts and low immune activation despite persistently high viral loads. Using a well-defined cohort of PSP, we investigated the role of regulatory T-cells (TREG) and of IL-7 homeostatic signaling in maintaining normal-for-age CD4 counts in these individuals. Compared to children with progressive disease, PSP had greater absolute numbers of TREG, skewed toward functionally suppressive phenotypes. As with immune activation, overall T-cell proliferation was lower in PSP, but was uniquely higher in central memory TREG (CM TREG), indicating active engagement of this subset. Furthermore, PSP secreted higher levels of the immunosuppressive cytokine IL-10 than children who progressed. The frequency of suppressive TREG, CM TREG proliferation, and IL-10 production were all lower in PSP who go on to progress at a later time-point, supporting the importance of an active TREG response in preventing disease progression. In addition, we find that IL-7 homeostatic signaling is enhanced in PSP, both through preserved surface IL-7receptor (CD127) expression on central memory T-cells and increased plasma levels of soluble IL-7receptor, which enhances the bioactivity of IL-7. Combined analysis, using a LASSO modeling approach, indicates that both TREG activity and homeostatic T-cell signaling make independent contributions to the preservation of CD4 T-cells in HIV-infected children. Together, these data demonstrate that maintenance of normal-for-age CD4 counts in PSP is an active process, which requires both suppression of immune activation through functional TREG, and enhanced T-cell homeostatic signaling

    Innate Lymphoid Cell Activation and Sustained Depletion in Blood and Tissue of Children Infected with HIV from Birth Despite Antiretroviral Therapy

    Get PDF
    Innate lymphoid cells (ILCs) are important for response to infection and for immune development in early life. HIV infection in adults depletes circulating ILCs, but the impact on children infected from birth remains unknown. We study vertically HIV-infected children from birth to adulthood and find severe and persistent depletion of all circulating ILCs that, unlike CD4+ T cells, are not restored by long-term antiretroviral therapy unless initiated at birth. Remaining ILCs upregulate genes associated with cellular activation and metabolic perturbation. Unlike HIV-infected adults, ILCs are also profoundly depleted in tonsils of vertically infected children. Transcriptional profiling of remaining ILCs reveals ongoing cell-type-specific activity despite antiretroviral therapy. Collectively, these data suggest an important and ongoing role for ILCs in lymphoid tissue of HIV-infected children from birth, where persistent depletion and sustained transcriptional activity are likely to have long-term immune consequences that merit further investigation
    corecore