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Background. Early HIV diagnosis allows combination antiretroviral therapy (cART) initiation in the first days of life following 
in utero (IU) infection. The impact of early cART initiation on infant viral reservoir size in the setting of high-frequency cART 
nonadherence is unknown.

Methods. Peripheral blood total HIV DNA from 164 early treated (day 0–21 of life) IU HIV-infected South African infants was 
measured using droplet digital PCR at birth and following suppressive cART. We evaluated the impact of cART initiation timing on 
HIV reservoir size and decay, and on the risk of subsequent plasma viremia in cART-suppressed infants.

Results. Baseline HIV DNA (median 2.8 log10 copies/million peripheral blood mononuclear cells, range 0.7–4.8) did not correlate 
with age at cART initiation (0–21 days) but instead with maternal antenatal cART use. In 98 infants with plasma viral suppression on cART, 
HIV DNA half-life was 28 days. However, the probability of maintenance of plasma aviremia was low (0.46 at 12 months) and not influ-
enced by HIV DNA load. Unexpectedly, longer time to viral suppression was associated with protection against subsequent viral rebound.

Conclusions. With effective prophylaxis against mother-to-child transmission, cART initiation timing in the first 3 weeks of life 
is not critical to reservoir size.

Keywords.  early infant diagnosis; in utero HIV; HIV reservoir; reservoir decay; pediatric HIV; early treatment; digital droplet 
PCR; viral rebound.

For children living with human immunodeficiency virus (HIV), 
although lifelong viral suppression with combination antiretro-
viral therapy (cART) is possible, rates of treatment failure and 
mortality on cART are higher compared to adults [1, 2], partic-
ularly for infants [3–5]. HIV DNA in resting long-lived CD4+ T 
cells, or the latent HIV reservoir, is established in the first days 
of infection [6–8] and in children and adults reactivates in the 
days to weeks following cART cessation [9–11], thus constitutes 

the ultimate barrier to HIV remission or cure. The only inter-
vention that has been shown to reduce the latent HIV reservoir 
is early initiation of cART, whereby lower reservoir levels are 
achieved by not only restricting the initial size [12, 13] and se-
quence diversity [14, 15] of the viral reservoir, but also its cel-
lular localization, skewing the reservoir to exist in shorter-lived, 
transitional CD4+ T-cell memory cells which decay faster than 
longer-lived central memory cells [16]. Because most in utero 
(IU) HIV infections occur in the final weeks of pregnancy [17, 
18], it is possible routinely to treat HIV-infected newborns early 
in infection when diagnosed at birth. Early treatment along with 
a favorable tolerogenic neonatal immune milieu [19–21] has 
led to great scientific interest in the early treatment of IU HIV-
infected infants as a model for HIV cure [22–24]. However, 
the precise age, whether it is hours or days of life, that defines 
early treatment to realize these benefits is unclear. In a cohort 
of IU HIV-infected infants in South Africa for whom cART was 
initiated within the first days of life, we quantified peripheral 
HIV DNA to determine the size and decay of the latent HIV 
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reservoir, and the relationship with subsequent plasma virolog-
ical control.

METHODS

Study Participants

Ucwaningo Lwabantwana is an observational study based in 
KwaZulu-Natal, South Africa, exploring early (aged <48 hours) 
cART for HIV-infected infants [25]. HIV-infected mothers and 
infants aged <21  days with confirmed positive total nucleic 
acid HIV polymerase chain reaction (PCR) testing at birth ei-
ther via point-of-care (PoC) testing (whole blood Gene Xpert; 
Cepheid) or laboratory-based test result from dried blood spots 
(DBS; COBAS AmpliPrep/COBAS TaqMan version 2; Roche 
Molecular Diagnostics). Routine HIV care was provided by local 
Department of Health clinic staff according to South African 
guidelines [26]. First-line maternal cART was fixed-dose com-
bination emtricitabine, tenofovir disoproxil fumarate, and 
efavirenz. Neonatal prophylaxis was commenced for all HIV-
exposed infants: nevirapine (NVP) only, or NVP and zidovudine 
(AZT) where maternal viremia >1000 HIV RNA copies/mL was 
noted. Infant cART consisted of AZT/lamivudine (3TC)/NVP 
until 28 days for term infants or 42 weeks corrected gestational 
age for preterm infants, after which the regimen was switched 
to abacavir/3TC/ritonavir-boosted lopinavir. The study was 
approved by the KwaZulu-Natal and Oxfordshire Biomedical 
Ethics Review Committees. Written informed consent was 
signed by the infant’s mother or guardian. The study presented 
here is an analysis of all data available prior to 31 December 
2019. Latent HIV reservoir measurements were undertaken at 
baseline then longitudinally where there was optimal cART ad-
herence, as demonstrated by declining plasma HIV RNA.

Definitions

 • Acute maternal infection was defined as a mother 
with a negative HIV rapid antibody test at antenatal booking, 
followed by a positive test later in pregnancy or at delivery.

 • All infants received a DBS test at birth but were 
subgrouped into PoC and DBS according to whether or not 
they were first diagnosed using a PoC test.

 • Viral suppression was defined as 1 viral load (VL) 
measurement lower than the limit of detection. Where an 
HIV DNA measurement at suppression was not available, the 
measurement was made at a time point within 3 months of 
suppression.

 • Two definitions of viral rebound were used: (1) 
low-level rebound, as 1 VL measurement >100 HIV RNA 
copies/mL, and (2) high-level rebound, as 1 VL measurement 
>1000 HIV RNA copies/mL.

 • A “blip” was defined as either (1) 1 VL >100 HIV 
RNA copies/mL preceded and followed by an undetectable 
VL, or (2) a VL that increased <1 log10 HIV RNA copies/mL 

between consecutive monthly measurements in the context 
of initial VL decline.

 • A viral suppression (VS) subgroup (n = 98) was de-
fined by those infants who were followed for ≥6  months 
postenrolment, had reached VL suppression by 6  months 
of age, had ≥1 HIV DNA measurement, had a VL that was 
less than, the same, or <1 log10 higher in consecutive monthly 
measurements.

 • Adherence was documented at each clinic visit using 
self-reports and by measuring returned medication (if avail-
able). Nonadherence was defined as evidence or reports of 
missing ≥2 doses.

Laboratory Methods

VL was measured by Nuclisens EasyQ version 2.0 HIV-1 RNA 
PCR (bioMérieux) with a limit of detection of 20 HIV RNA 
copies/mL but <100 for low-volume samples. Lysed extracts 
from thawed peripheral blood mononuclear cells (PBMC) 
were used to measure total HIV DNA by droplet digital PCR 
(ddPCR; BioRad) with 5′ long terminal repeat or gag primers 
and probes, depending on the efficiency of detection in each 
patient [27]. The HIV DNA count was normalized using RPP30 
housekeeping gene quantification to give a value per million 
PBMC with a 95% Poisson confidence interval, as estimated 
across replicates by the QuantaSoft (BioRad) software. A limit 
of detection for each sample was estimated according to input 
cell number and where HIV DNA was undetectable, the result 
was recorded as the limit of detection. Results were excluded if 
HIV DNA was undetectable and the limit of detection was >25 
copies/million PBMC.

Statistics

Statistical analyses were performed using R Software version 3.6.1 
[28] and GraphPad Prism version 8. Comparisons were performed 
using the χ 2 and Fisher exact test for categorical variables. Two-
group continuous variables were compared using the t test (para-
metric) or the Mann-Whitney U test (nonparametric). Univariate 
and multivariate linear regression were calculated using the lm R 
function. In the baseline HIV DNA analysis, where a large number 
of covariates were analyzed, a penalized multivariate linear re-
gression model was used whereby the set of relevant predicting 
covariates was selected using the LASSO penalty approach [29] 
and the optimal penalty (λ) was determined via 10-fold cross-
validation using the glmnet R package [30]. The LASSO-selected 
covariates were then used in a (post-LASSO) multivariate linear re-
gression to give unpenalized regression coefficient estimates. The 
resulting P values in a post-LASSO analysis should be interpreted 
with caution because variable selection via a penalized approach is 
a separate concept to significance. A potentially nonlinear ln-HIV 
DNA decay over time in the VS infants was estimated and visu-
alized via a generalized additive mixed model (GAMM) with a 
random effect (intercept only) on the participant, then again in a 
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multivariate analysis to assess for covariates influencing HIV DNA 
level over time, both using the mgcv R package [31]. The HIV 
DNA half-life (t1/2) was calculated by using the time at which the 
HIV DNA level was half of its value at baseline, via the predict().
gam function. Pearson correlation was used to determine age of 
cART initiation correlation with age of VL suppression. Kaplan-
Meier curves were used for time to viral suppression and rebound 
analyses, and Cox proportional hazard models using the coxph R 
function for multivariate analyses where incorporated covariates 
were those either significant in the baseline HIV DNA analysis or 
those of potential clinical relevance. All P values were 2-sided with 
an α of .05.

RESULTS

Baseline HIV DNA

Of 191 IU HIV-infected infants enrolled, a baseline HIV DNA 
measurement was available for 164 infants, whose characteris-
tics at baseline are displayed in Table 1. cART was initiated at a 
median age of 6.5 days (interquartile range [IQR], 1–11 days, 

maximum 21  days). The median infant baseline HIV DNA 
level was 2.8 log10 copies/million PBMC (IQR, 2.3–3.4), but 
levels were variable, ranging from 0.7 to 4.8 log10 copies/mil-
lion PBMC. The baseline HIV DNA levels in the 77/164 (47%) 
PoC-tested infants did not differ from the infants diagnosed via 
DBS testing (P = .7, not shown). Furthermore, there was no sig-
nificant relationship between baseline HIV DNA level and in-
fant age at the time of measurement (β coefficient = −.01, P = .3; 
Figure 1A), even when adjusted for infant CD4 percentage and 
VL (P = .14, not shown) or analyzed by PoC/DBS group.

To explore the potential influence of a large number of base-
line maternal and infant characteristics on baseline HIV DNA, 
a penalized linear regression model (LASSO) was used to se-
lect influencing covariates from a possible set of 26 variables, 
as listed in Table 1. In the model representing all 164 infants, 
relatively, the baseline covariates that were the most influential 
on baseline infant HIV DNA were infant VL and CD4+ T-cell 
percentage, followed by absence of antenatal maternal cART 
(Figure 1B and Supplementary Figure 1A). Infant age at blood 

Table 1. Baseline Characteristics of All Infants Versus Those Virally Suppressed

Characteristic Baseline Infants (n = 164) Virally Suppressed Infants (n = 98) P Value

Infant    

 Sex male, No. (%) 60 (36.6) 36 (36.7) 1

 Median birth weight, kg, median (IQR) 2.8 (2.4–3.1) 2.9 (2.5–3.2) .2

 Median gestational age at birth, wk, median (IQR)a 38 (36–39) 37.5 (37–39) .4

 Dual prophylactic ART, No. (%) 111 (67.7) 72 (73.5) .2

 PoC tested, No. (%) 77 (47) 41 (41.8) .1

 DBS PCR result indeterminate or negative, No. (%) 15 (9) 11 (11.2) .4

 Age of cART initiation, d, median (IQR)b 6.5 (1–11) 7 (1–11) .6

 Age of blood draw, d, median (IQR) 7 (1–11) 7 (1–11) .6

 Neonatal admission, No. (%) 54 (32.9) 29 (29.6) .4

 Breast feeding, No. (%) 130 (79.3) 77 (78.6) .7

 CD4 count, cells/μL, median (IQR) 2120 (1291–2702) 2222 (1371–2777) .6

 CD4 percentage, median (IQR) 44.5 (35.3–52) 45.5 (38–53) .11

 CD8 count, cells/μL, median (IQR) 1088 (685–1587) 983 (616–1433) .3

 CD8 percentage, median (IQR) 23 (18–32) 22 (18–28) .3

 CD4:CD8, median (IQR) 1.84 (1.17–2.77) 2.08 (1.45–2.84) .2

 Plasma viral load, copies/mL, median (IQR) 9700 (1200–56500) 3700 (310–30500) .04

 Log10 HIV DNA copies/million PBMC, median (IQR) 2.8 (2.3–3.4) 2.6 (2.2–3.3) .1

Mother    

 Age, y, median (IQR) 25.2 (21.9–30.3) 24.5 (21.2–29.7) .3

 Acute maternal infection, No. (%) 43 (26.2) 29 (29.6) .6

 cART initiation postnatal, No. (%) 15 (9.1) 8 (8.2) 1

 Duration cART in pregnancy, d, median (IQR) 104 (13–217) 95 (8–178) .3

 Self-reported maternal nonadherence, No. (%)c 70 (54) 36 (48) .5

 CD4 count, cells/μL, median (IQR) 460 (317–646) 516 (350–650) .4

 CD4 percentage, median (IQR) 24 (19–31) 25 (19–32) .4

 CD8 count, cells/μL, median (IQR) 952 (706–1272) 910 (660–1332) .6

 CD8 percentage, median (IQR) 52.5 (43.3–58.8) 49 (41–58) .4

 CD4:CD8. median (IQR) 0.46 (0.32–0.7) 0.5 (0.33–0.74) .3

 Plasma viral load, HIV RNA copies/mL, median (IQR) 3750 (488–85957) 2250 (253–20750) .2

Abbreviations: cART, combination antiretroviral therapy; DBS, dried blood spot; HIV, human immunodeficiency virus; IQR, interquartile range; PCR, polymerase chain reaction; PoC, 
point-of-care. 
aExcluded from multivariate analysis because of missing data.
bReplaced by cART prior to blood draw in multivariate analysis.
cOf all mothers who were initiated on cART prior to labor.
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draw did not influence HIV DNA level. The selected influen-
tial covariates were then input in a (post-LASSO) multivariate 
linear regression to determine their absolute influence on infant 
HIV DNA (Table 2). The absence of antenatal maternal cART 
increased infant HIV DNA by 0.6 log10 copies/million PBMC.

The infants who were diagnosed by PoC testing were ana-
lyzed separately from the infants who were diagnosed by DBS 
testing to account for any selection bias between the 2 groups 
[25]. The median infant age at baseline blood draw in these 
groups was 1 day (IQR, 1–2) and 11 days (IQR, 8–14), respec-
tively. The separate baseline HIV DNA multivariate analyses 
are shown in Figure 1C and 1D and Supplementary Figure 1B 
and 1C. In both groups, infant VL and CD4+ T-cell percentage 
still had the strongest relationship with HIV DNA level. Male 
sex was additionally associated with lower DNA load and acute 
maternal infection during the pregnancy with higher DNA load 
in the PoC group (Table 2 and Figure 1C and 1D). We observed 

that, after adjusting for other influencing variables, for those 
infants tested at birth, males had HIV DNA levels 0.5 log10 HIV 
copies/million PBMC lower than female infants (Table 2).

HIV DNA Decay

Despite early treatment, in general, virological response to 
cART in this cohort was suboptimal [25]. However, a sub-
group of 98 infants with successful viral suppression (VS in-
fants) were further analyzed via longitudinal measurements of 
HIV DNA load to examine HIV DNA decay in early treated 
infants (Supplementary Figure 2). To check for representative-
ness, the VS infants’ baseline characteristics were compared to 
all the infants with measurements at baseline (Table 1). The VS 
infants had significantly lower baseline VL (median 3700 vs 
9700 HIV RNA copies/mL, P = .04) but baseline characteris-
tics were otherwise similar. In the VS group, median age at VL 
suppression was 60 days (IQR, 29–90 days) and this was not 
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Figure 1. Baseline infant HIV DNA levels. A, Baseline HIV DNA levels as determined using droplet digital PCR on PBMC from 164 infants at a median age 7 days. 
Undetectable HIV DNA is represented by an open circle at the limit of detection for that measurement. Measurements are displayed according to the age of the infant at the 
time of measurement. Univariate linear regression model shown by the black line. B–D, Covariates selected using a penalized linear regression model (LASSO) are shown 
left to right along the x-axis in order of standardized β coefficient magnitude, which represents their relative influence on HIV DNA. Positive, orange bars indicate covariates 
associated with higher HIV DNA, while negative, green bars indicate covariates associated with lower HIV DNA. These selected covariates were used in the post-LASSO 
linear regression to calculate unpenalized, unstandardized β coefficients (Table 2). C, LASSO model for all 164 infants. C and D, Point-of-care tested infant and dried blood 
spot tested infant subgroups, respectively. Abbreviations: cART, combination antiretroviral therapy; HIV, human immunodeficiency virus; PBMC, peripheral blood mononuclear 
cell; PCR, polymerase chain reaction.
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significantly correlated with age at cART initiation (r2 = 0.18, 
P  =  .08, not shown), even when adjusted for baseline CD4+ 
T-cell percentage and VL (β = .02, P = .1, not shown). VS in-
fant HIV DNA measurements were censored at VL rebound, 
resulting in 274 measurements in the first 3.5  years of life, 
of which 40/274 (14.5%) were below the limit of detection. 
The HIV DNA over time GAMM was nonlinear, well repre-
sentative of the data and highly significant (adjusted R2 0.84, 
P < .0001; Figure 2).

Rate of decay was estimated from the model, giving an initial 
(ie, from baseline) half-life of 28 days. At 90 days the half-life 
had increased to 194 days. A multivariate GAMM was used to 
determine the factors influencing the change in HIV DNA over 
time (Table 3). VL over time and age at viremia suppression 
significantly influenced HIV DNA decay while age of cART 

initiation, blips, documented nonadherence, infant sex, and 
CD4+ T-cell percentage over time did not (Table 3).

HIV DNA and Plasma Viremia Control

The relationship between HIV DNA levels and plasma viremia 
control was explored, first by examining the time to virological 
suppression in all 164 infants. Baseline infant VL, CD4+ T-cell 
percentage and HIV DNA levels independently influenced time 
to suppression of plasma viremia, based on univariate Cox re-
gression analyses and a multivariate analysis (Table 4). The ad-
dition of infant sex, age of cART initiation, and PoC testing did 
not individually influence time to suppression nor improve the 
fit of the multivariate model. In the final multivariate model, 
baseline log10 VL had the strongest influence on time to sup-
pression (hazard ratio [HR], 0.55; 95% confidence interval [CI], 

Table 2. Variables Associated With Infant Baseline HIV DNA Level, a Post-LASSO Multivariate Analysis

 All Infants (n = 164) PoC Infants (n = 77) DBS Infants (n= 87)

Variable β 95% CI P Valuea β 95% CI P Valuea β 95% CI P Valuea

Infant plasma viral load, log10 HIV RNA copies/mL .22 .14 to .3 <.0001 .22 .09 to .35 .001 .26 .17 to .35 <.0001

Infant CD4, % −.03 −.04 to −.02 <.0001 −.01 −.04 to .01 .2 −.03 −.04 to −.02 <.0001

No antenatal cART .61 .24 to .98 .002 .76 .13 to 1.39 .02 … … …

Male infant … … … −.49 −.88 to −.09 .02 … … …

Acute maternal infection … … … .29 −.08 to .66 .1 … … …

Infant CD4:CD8 … … … −.08 −.28 to .11 .4 … … …

Maternal age, y … … … … … … −.02 −.04 to 0 .03

Adjusted r2 all infants = 0.37 (P ≤ .0001); PoC infants = 0.39 (P ≤ .0001); DBS infants = 0.5 (P ≤ .0001).

Abbreviations: β, unstandardized regression coefficient estimate; cART, combination antiretroviral therapy; CI, confidence interval; DBS, dried blood spot tested; HIV, human immunodefi-
ciency virus; PoC, point-of-care tested.
aP values for post-LASSO linear regression models should be interpreted with caution as they ignore the selection by LASSO.
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.45–.67; P < .0001; Table 4). After this adjustment, baseline HIV 
DNA level still had a significant effect, where an increase of 1 
log10 HIV DNA copies/million PBMC decreased the rate to sup-
pression by 26% (P = .01; Table 4).

Next, maintenance of plasma aviremia on cART was evaluated 
in the VS infants with regard to (1) HIV DNA level at baseline 
and (2) HIV DNA at the time point VL suppression was achieved. 
HIV DNA load was assessed both as a continuous variable, and a 
categorical variable (above and below the median value). Median 
time to viral rebound >100 HIV RNA copies/mL was 423 days 
(95% CI, 320–666) and 571 days (95% CI, 280–∞) for >1000 HIV 
RNA copies/mL. The probability of viral rebound >1000 HIV 
RNA copies/mL at 12 months was 0.46 (95% CI, .34–.56). The 
univariate analyses did not find any significant relationship be-
tween HIV DNA load at baseline or at the time of suppression 
and time to viral rebound for either definition (Table 5). The best 
fit multivariate model for time to viral rebound >1000 HIV RNA 
copies/mL was statistically significant, but older infant age at 
viral suppression was associated with a slower rebound rate (HR, 

0.93; 95% CI, .88–.98; P = .009) and not with HIV DNA load at 
baseline or HIV DNA load at the time point VL suppression was 
achieved (Table 5). The best fit multivariate model for time to 
low-level viral rebound was not statistically significant (Table 5).

DISCUSSION

This is the largest study of HIV DNA in early treated IU HIV-
infected infants. Baseline infant HIV DNA levels were low, in 
some cases below the limit of detection, and this was associated 
with maternal antenatal cART use. However, there was no evi-
dence to suggest that for infants receiving ART as prophylaxis, 
which is the standard of care for HIV-exposed infants, that there 
was expansion of the latent HIV reservoir in the first 3 weeks of 
life, nor that earlier initiation of cART resulted in faster HIV 
DNA decay. PoC diagnosis and the subsequent blood sampling 
within hours of birth provided insight into clinical factors po-
tentially influencing HIV DNA in utero. Higher HIV DNA 
levels were demonstrated in female infants and those born to 
acutely infected mothers. Lower HIV DNA was found in infants 

Table 4. Variables Influencing Time to Viral Suppression

Variable

Univariate Multivariate

HR (95% CI) P Value HR (95% CI) P Value

Baseline infant HIV DNA, log10 copies/million PBMC 0.59 (.49–.72) <.0001 0.75 (.60–.94) .01

Baseline infant plasma viral load, log10 HIV RNA copies/mL 0.52 (.43–.63) <.0001 0.55 (.45–.66) <.0001

Baseline infant CD4, % 1.03 (1.01–1.05) <.0001 1.02 (1.01–1.04) .008

Male infant 0.87 (.60–1.27) .5 … …

PoC tested 0.82 (.57–1.17) .3 … …

Infant age at cART initiation, d 1.01 (.98–1.04) .7  … …

Cox proportional hazard model. Wald test P ≤ .0001.

Abbreviations: cART, combination antiretroviral therapy; CI, confidence interval; HIV, human immunodeficiency virus; HR, hazard ratio; PoC, point-of-care. 

Table 3. Variables Influencing HIV Decay

Variable Estimate (95% CI) P Value

Parametric coefficients

Intercept 2.12 (1.8 to 2.43) <.0001

Infant sex 0.004 (−.28 to .29) .98

Blipsa 0.12 (−.31 to .55) .6

Documented cART nonadherenceb −0.08 (−.22 to .06) .3

PoC tested 0.16 (−.34 to .66) .5

Approximate significance of smooth terms EDF P Value

cART duration, d 3.19 <.0001

Infant age at cART initiation, d 1.00 .80

Infant age suppressed, wk 1.00 .0003

Plasma viral load, log10 HIV RNA 
copies/mL over time

1.00 <.0001

CD4 percentage over time 2.02 .3

Generalized additive mixed model adjusted R2 = 0.86.

Abbreviations: cART, combination antiretroviral therapy; CI, confidence interval; EDF, effective degrees of freedom; HIV, human immunodeficiency virus; PoC, point-of-care tested.
aA blip was defined as one plasma viral load >100 HIV RNA copies/mL preceded and followed by an undetectable plasma viral load, or a plasma viral load that increased <1 log10 HIV RNA 
copies/mL between consecutive monthly measurements during initial viremia decline.
bEvidence or reports of missing ≥2 doses.
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with lower VL and higher CD4+ T-cell percentages, but it is un-
known whether these correlations were causal or consequential. 
VL at baseline and age of suppression were significantly associ-
ated with HIV DNA decay rate, but this was not further influ-
enced by blips or documented cART nonadherence. Although 
lower infant HIV DNA levels were associated with a faster time 
to VL suppression, they were not associated with suppression 
maintenance, suggesting that there are immunological, virolog-
ical, or behavioral factors that override the potential biological 
advantages of low latent HIV reservoirs in early treated IU HIV-
infected infants in the first years of life.

We found higher infant HIV DNA than the only 2 other 
studies of HIV DNA in IU HIV-infected prevention of mother-
to-child transmission (PMTCT)-exposed infants in the first 
days of life (median 2.8 vs 2.1 and 2.2 log10 HIV DNA copies/
million PBMC) [12, 13], although this may be related to small 
sample sizes in the other studies (n = 9 and 7 vs n = 164 here). 
HIV DNA levels in the first days of life from all 3 studies were 
approximately 1 log10 copies/million PBMC lower than in IU 
HIV-infected infants not exposed to PMTCT [32]. Maternal 
cART use in pregnancy in our study was common (approxi-
mately 75% [25]). The ratio of umbilical cord blood to maternal 
blood ART levels is close to 1 [33], and in South Africa, serum 
drug levels of NVP and AZT when administered at prophy-
laxis dosing are often indistinguishable from those observed 
following treatment dosing [26, 34, 35]. Thus, this substantial 
infant exposure to ART transplacentally and postnatally as pro-
phylaxis prior to cART initiation is lowering or restricting in-
fant latent HIV reservoir size.

From these low levels, HIV DNA decayed quickly with an 
initial HIV DNA half-life of 28  days. This was shorter than 
the 2.7 months observed by Veldsman et al in their analysis of 
infants with similar ages of cART initiation and VL suppres-
sion [13], although in their analysis the half-life was taken at 
6 months, in comparison to the initial decline we have reported. 
IU HIV transmission is estimated to occur at a median of 
14 days prior to delivery [17], and our infants were on average 
1 week postdelivery, thus 3 weeks postinfection, but the HIV 
DNA decay rate in the infants was faster than the approximate 
half-life of decay of 12 weeks for adults treated in the first days 
of infection [7], demonstrating benefits of the neonatal immune 
system. It was intriguing to note that although HIV DNA decay 
was significantly associated with VL, it was not influenced by 
blips or documented nonadherence (Table 3). This raises the 
possibility that the initial degree and length of plasma viremia 
is more crucial in terms of reservoir size compared with short 
periods of viremia later, also shown in analytic treatment inter-
ruption studies in adults [36, 37]. However, it may have been 
that 3-monthly VL measurements and self-reports of adherence 
were simply insensitive markers for intermittent viremia.

Similar to our multivariate model of HIV DNA decay, most 
pediatric studies have found lower levels of HIV DNA associated Ta
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with younger infant age at suppression [10, 12, 13, 16, 38–45]. 
The key difference for our cohort was there was no association 
between age of cART initiation and age of suppression, prob-
ably because previous studies analyzed age of cART initiation 
in the order of months, compared to our narrow window of 
age of initiation (21  days). Interestingly, we found that time 
to rebound was faster in those infants who suppressed plasma 
viremia earlier. This may have been due to more effective HIV-
specific immune responses in those infants who were exposed to 
plasma viremia for longer, delaying rebound [9]. Alternatively, 
this finding may instead be due to behavioral factors, where 
mothers of viremic infants in the first months receive the most 
attentive adherence support, addressing central issues such as 
disclosure, and developed robust cART administration skills.

Studies have shown correlations between lower peripheral 
total HIV DNA levels and superior maintenance of plasma 
aviremia in children [43, 46], but compared to these, our par-
ticipants had a much higher probability of VL rebound (0.46 
at 12 months compared with 0.01 in Kuhn et al [43]), but were 
also much younger, so less likely to be cART adherent ([3, 4]). 
It is possible that lower HIV DNA levels are useful in slowing 
viral rebound in the context of occasional missed doses, but not 
for the higher levels of nonadherence seen in younger children.

The findings of our study are relevant to settings like South 
Africa, with well implemented PMTCT programs, including 
antenatal cART, neonatal prophylaxis, and HIV testing at birth. 
Although we did not find any benefit in terms of latent HIV 
reservoir size for initiating cART in the first hours versus days 
of life, it is important to make the point that this should not 
be used as an argument against PoC testing for early infant di-
agnosis, which has been shown to decrease test turnaround 
time and increase rates of cART initiation [47, 48], crucial for 
KwaZulu-Natal, where only 25% of infants return for confirm-
atory HIV testing following an initial positive DBS test [49]. 
Furthermore, the innate immunological benefits of cART ini-
tiation in the first days of life are enabled by PoC testing [12].

We used total PBMC HIV DNA as a surrogate marker for la-
tent HIV reservoir which may have overestimated HIV DNA 
able to contribute to plasma viremia. However, measurement of 
total HIV DNA still has clinical relevance, as defective and un-
integrated HIV DNA triggers inflammation contributing to dis-
ease progression [50]. There was an inverse relationship between 
CD4+ T-cell percentage and HIV DNA, therefore in the case of 
low CD4+ T-cell count there would have been an even higher 
concentration of HIV DNA per CD4+ T cell than measured.

This HIV DNA decay analysis benefited from a large sample size, 
but its generalizability may be limited by excluding those infants 
with prolonged time to suppression and higher baseline plasma 
viral load who may have had intrinsically different viral or immune 
characteristics. However, inadequate plasma viral suppression for 
those infants was more likely secondary to cART nonadherence, a 
scenario for which HIV DNA decay is less relevant.

In conclusion, where PMTCT programs are implemented 
well, and the standard of care can achieve HIV diagnosis at 
birth and cART initiation within the first 3 weeks of life, the 
priority for IU HIV-infected infant cART initiation should be 
timed to maximize caregiver adherence to achieve and sustain 
viral suppression, rather than aiming for lower HIV DNA as a 
hallmark of HIV remission.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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