148 research outputs found

    Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Get PDF
    International audienceNoninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice

    Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA

    Get PDF
    One year of back-scattering lidar cloud boundaries and optical depth were analysed for coincident inter-comparison with the latest processed versions of the NASA-TERRA MISR stereo and MODIS CO2-slicing operational cloud top heights. Optically thin clouds were found to be accurately characterised by the MISR cloud top height product as long as no other cloud was present at lower altitude. MODIS cloud top heights were generally found within the cloud extent retrieved by lidar; agreement improved as cloud optical depth increased and when CO2-slicing was the only technique used for the retrieval. The difference between Lidar and MISR cloud top heights was found to lie between −0.1 and 0.4 km for low clouds and between 0.1 and 3.1 km for high clouds. The difference between Lidar and MODIS cloud top heights was found to lie between −1.2 and 1.5 km for low clouds and between −1.4 and 2.7 km for high clouds

    Scaffolds for controlled release of cartilage growth factors

    Get PDF
    In recent years, cell-based therapies using adult stem cells have attracted considerable interest in regenerative medicine. A tissue-engineered construct for cartilage repair should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable and biocompatible poly (d,l-lactide-co-glycolide acid) (PLGA), are a unique system which combines these properties in an adaptable and simple microdevice. This device relies on nanoprecipitation of proteins encapsulated in polymeric microspheres with a solid in oil in water emulsion-solvent evaporation process, and their subsequent coating with extracellular matrix protein molecules. Here, we describe their preparation process, and some of their characterization methods for an application in cartilage tissue engineering

    Tumor transfection after systemic injection of DNA lipid nanocapsules

    Get PDF
    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy

    Redox-Driven Transformation of a Discrete Molecular Cage into an Infinite 3D Coordination Polymer

    Get PDF
    Two M12L6 redox‐active self‐assembled cages constructed from an electron‐rich ligand based on the extended tetrathiafulvalene framework (exTTF) and metal complexes with a linear geometry (PdII and AgI) are depicted. Remarkably, based on a combination of specific structural and electronic features, the polycationic self‐assembled AgI coordination cage undergoes a supramolecular transformation upon oxidation into a three‐dimensional coordination polymer, that is characterized by X‐ray crystallography. This redox‐controlled change of the molecular organization results from the drastic conformational modifications accompanying oxidation of the exTTF moiety

    New PLGA-P188-PLGA matrix enhances TGF-ÎČ3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells

    Get PDF
    The use of injectable scaffolding materials for in vivo tissue regeneration has raised great interest in various clinical applications because it allows cell implantation through minimally invasive surgical procedures. In case of cartilage repair, a tissue engineered construct should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable poly(d,l-lactide-co-glycolide acid) (PLGA), are a unique system, which combines these properties in an adaptable and simple microdevice. However, a limitation of such scaffold is low and incomplete protein release that occurs using the hydrophobic PLGA based microspheres. To circumvent this problem, we developed a novel formulation of polymeric PAMs containing a P188 poloxamer, which protects the protein from denaturation and may positively affect chondrogenesis. This poloxamer was added as a free additive for protein complexation and as a component of the scaffold covalently linked to PLGA. This procedure allows getting a more hydrophilic scaffold but also retaining the protective polymer inside the microcarriers during their degradation. The novel PLGA-P188-PLGA PAMs presenting a fibronectin-covered surface allowed enhanced MSC survival and proliferation. When engineered with TGFÎČ3, they allowed the sustained release of 70% of the incorporated TGF-ÎČ3 over time. Importantly, they exerted superior chondrogenic differentiation potential compared to previous FN-PAM-PLGA-TGF-ÎČ3, as shown by an increased expression of specific cartilage markers such as cartilage type II, aggrecan and COMP. Therefore, this microdevice represents an efficient easy-to-handle and injectable tool for cartilage repair

    Promoting Spontaneous Second Harmonic Generation through Organogelation

    Get PDF
    An organogelator based on the Disperse Red NLO-phore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for pre-processing and this SHG activity appears stable over several months. These findings, based on an intrinsic structural approach are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles alignment

    Image storage in coumarin-based copolymer thin films by photoinduced dimerization

    Get PDF
    We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio
    • 

    corecore