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Redox-Driven Transformation of a Discrete Molecular Cage into
an Infinite 3D Coordination Polymer
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Abstract: Two M12L6 redox-active self-assembled cages
constructed from an electron-rich ligand based on the ex-

tended tetrathiafulvalene framework (exTTF) and metal
complexes with a linear geometry (PdII and AgI) are de-

picted. Remarkably, based on a combination of specific
structural and electronic features, the polycationic self-as-

sembled AgI coordination cage undergoes a supramolec-
ular transformation upon oxidation into a three-dimen-
sional coordination polymer, that is characterized by X-ray

crystallography. This redox-controlled change of the mo-
lecular organization results from the drastic conformation-

al modifications accompanying oxidation of the exTTF
moiety.

Reversible coordination bonds have been intensively employed

for the preparation of both discrete and infinite supramolec-
ular assemblies. In particular, coordination polymers have fo-
cused a strong attention for various types of application such

as gas storage/ separation, catalysis, detection, and even for
molecular analysis.[1] Beyond inducing polymerization, the co-

ordination bond has also been extensively used to drive the
construction of discrete bi- or three-dimensional self-assem-
bled architectures in a single step and with quantitative

yields.[2, 3] The corresponding generated cavities make those
systems eligible for various applications, for example in host–

guest chemistry, catalysis, or drug delivery.[4] Importantly, the
dynamic nature of the coordination bonds guiding those self-
assembly processes allows them to undergo supramolecular
transformations driven by external stimuli, irradiation, guest ex-

change, and solvent or metal substitution. These transforma-

tions may lead to new discrete structures differing by the
shape or by the metal to ligand stoichiometry,[5] as well as to

1D supramolecular polymers.[6]

In the course of our studies related to electron-rich and

redox-active coordination-driven self-assemblies,[7] we are par-

ticularly interested in using ligands based on the so called ex-
tended tetrathiafulvalene moiety (exTTF).[8] The latter is charac-

terized by a high p-donating ability and is able to generate a
dicationic species (exTTF2+) according to a two-electron oxida-

tion. A key feature of this unit relies on its geometry, which is
severely modified depending on the redox state. Whereas the

neutral exTTF is highly curved because of intramolecular H···S

interactions (Figure 1 b), the corresponding oxidized species

exTTF2+ exhibits a fully aromatic relaxed conformation with
two 1,3-dithiolium rings linked to a central planar anthracene

moiety.[9] This is illustrated by the X-ray diffraction (XRD) stud-

ies led on L,[8d] and on the hereafter characterized electro-crys-
tallized L2 ++ salt (Figure 1 b and Supporting Information). Taking

advantage of this unique feature, we recently demonstrated
that an exTTF-based M4L2

8 + container can be reversibly disas-

sembled through an electrochemical stimulus into the corre-
sponding oxidized ligands and metal complexes.[8b] Neverthe-

less, to the best of our knowledge, there is no example yet, de-

scribing the transformation of a supramolecular discrete struc-
ture into an infinite three-dimensional architecture through an

external redox stimulus.
We report herein the synthesis of two large redox-active

M12L6 neutral and polycationic self-assembled cages, respec-
tively, constructed upon assembling between an extended tet-

Figure 1. a) Structure of exTTF-based tetrapyridyl ligands; b) X-ray structures
of L[8d] and L2 ++ (electrocrystallization, C = 6 V 10@4 m, CH2Cl2, nBu4NPF6, 0.5 mA,
20 8C, 9 days). PF6

@ anions omitted for clarity.
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rathiafulvalene ligand (LTEG) and two different metal com-
plexes (PdII and AgI respectively) possessing a linear coordina-

tion geometry. We demonstrate that addition of an excess of
silver cations onto the polycationic cage leads to the formation

of an infinite three-dimensional supramolecular polymer, that
could be characterized by XRD.

Ligand LTEG[8b] and trans PdCl2(CH3CN)2 (2 equiv.) were
mixed in DMSO at 100 8C to afford a neutral self-assembled
cage (Pd12(LTEG)6) (in which Pd corresponds to PdCl2). After
precipitation with ethyl acetate, the resulting solid was charac-
terized in CDCl3 by 1H NMR and 1H DOSY NMR spectroscopy
(Figure 2). Compared to the starting ligand LTEG (Figure 2 a),

the quantitatively isolated species shows broader NMR signals
than usual for large discrete structures (Figure 2 b).[10] The for-

mation of a single discrete compound is established by 1H
DOSY, for which only one set of signals is observed, with a dif-

fusion value of D = 1.93 V 10@10 m2 s@1. A calculated Stokes
radius[11] of 21 a confirms the formation of a large size self-as-

sembled structure. Performing ESI mass spectrometry of neu-
tral metal complexes is usually challenging, in particular for
high molecular weight compounds. We took advantage of the

cation binding ability of the TEG chains to stabilize ionic spe-
cies, to characterize the system by MS. The ESI-FTICR (Fourier-

transform ion cyclotron resonance) experiments were therefore
carried out in presence of KOTf, which allowed us to determi-

nate unambiguously a M12L6 stoichiometry (i.e. , Pd12(LTEG)6)

with characteristic peaks corresponding to the [Pd12(LTEG)6 +

(KOTf)n = 9–12@7 OTf]7 + and to the [Pd12(LTEG)6 +

(KOTf)n = 7–11@6 OTf]6 + cations (Figure S12).
Besides the above neutral M12(LTEG)6 supramolecular cage, a

similar polycationic one was prepared from a silver cation. The
reaction between LTEG and 2 equivalents of AgBF4 was fol-

lowed by 1H NMR spectroscopy in CDCl3/CD3NO2 (1/1) (Fig-
ure 2 d). This mixture produced instantaneously a single dis-

crete structure presenting a diffusion coefficient of 2.19 V
10@10 m2 s@1; a value which characterizes a cavity size similar to

the one observed above for the palladium cage Pd12(LTEG)6.[12]

An M12L6 stoichiometry, consistent with the latter observation,

could be established by ESI-FTICR, with characteristic signals
corresponding to the [Ag12(LTEG)6]12 ++ cage (Figure S13 in Sup-

porting Information). Note that a similar self-assembly experi-

ment carried out in CH3CN, did not afford any supramolecular
discrete structure (Figures S14–S17), illustrating the crucial role
of solvents in coordination driven self-assembly processes. In
addition, it is worth noting that 2 equivalents of silver cations

are sufficient to generate the self-assembly, in accordance with
a metal coordination process involving solely the pyridyl units

and not the TEG chains.

This behavior is corroborated by 1H NMR study, since no
evolution of the TEG signals was observed along the self-as-

sembly process (Figure 2 c,d). Since no single crystal suitable
for X-ray analysis could be grown from those M12(LTEG)6 struc-

tures, molecular force field (MM +) optimization studies were
undertaken (Figure 3 and Figure S18 in Supporting Informa-

tion). They consistently converge towards a square-based bi-

pyramidal geometry in which the silver (or palladium) atoms
adopt a nearly linear geometry (Pyr–Ag–Pyr : ca. 1758). In addi-
tion, the curvature of the ligands, characterized by the intra-
molecular angle between both 1,3-dithiol-2-ylidene mean
planes, is of 87–898 (Figures 3, Figure S18), a value which is

similar to the free ligand one (L : 868, Figure 1 b). Such values il-
lustrate a good geometrical matching between both counter-
parts (ligand and metal complex) and the absence of confor-
mational energy cost upon the self-assembly process. The re-
sulting cavities are calculated to exhibit a very large volume of
approximately 4200 a3 (Figures S19 and S20).[13]

The electrochemical properties of ligand LTEG and cages

Pd12(LTEG)6 and [Ag12(LTEG)6]12 ++ were studied by cyclic vol-
tammetry (Figure 4). Due to solubility issues, distinctive sol-

vents were used for the three compounds. As usually observed
for exTTF derivatives, LTEG shows a pseudo-reversible wave in-

volving two electrons at E1
ox = + 0.05 V versus Fc/Fc+ . This oxi-

dation wave is shifted to a higher potential at E1
ox = + 0.35 V

Figure 2. 1H NMR spectra and corresponding diffusion coefficients extracted
from 1H DOSY NMR experiments a) ligand LTEG in CDCl3, b) cage
Pd12(LTEG)6 in CDCl3, c) ligand LTEG in CDCl3/CD3NO2 (1/1), d) cage
[Ag12(LTEG)6]12 ++ in CDCl3/CD3NO2 (1/1) and e) [Agn(Ag12LTEG)6](n ++ 12) ++ in
CDCl3/CD3NO2 (1/1).

Figure 3. MM + simulation of cage [Ag12(LTEG)6]12 ++ .
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versus Fc/Fc+ in the case of cage Pd12(LTEG)6, as expected

from coordination to the palladium center. It is worth noting
that the process is quasi-reversible in this case, suggesting that

the integrity of the cage is preserved upon oxidation. Consis-

tently, we recently reported a similar (reversibility and Eox) be-
havior for a neutral Pt4(LTEG)2 self-assembly (see Figure S21

for comparison).[8a] On the other hand, a strikingly different be-
havior is observed for the polycationic cage [Ag12(LTEG)6]12 ++ .

Again, the oxidation wave is located at a higher potential of
E1

ox = + 0.45 V versus Fc/Fc+ in comparison with ligand LTEG,

but in this case the corresponding reduction process occurs at

a very low value (E1
red =@0.36 V). The latter appears very close

to the one already observed for another polycationic exTTF

based self-assembly (Pd4(LTEG)2)8++ , for which we unambigu-
ously demonstrated the cage disassembling upon oxidation

(see Figure S22 for comparison).[8b]

On this basis, we were interested in further testing the be-
havior of the polycationic [Ag12(LTEG)6]12 ++ upon chemical oxi-

dation, and in identifying the products following the cage dis-
assembly process. The latter process was monitored by
1H NMR spectroscopy. Upon addition of 12 equivalents of
AgBF4 to the [Ag12(LTEG)6]12 ++ complex, the anthracenyl pro-
tons signals were only slightly downfield-shifted, whereas a
significant modification of the TEG signals was observed, and

the diffusion coefficient value (D) remained constant (Fig-
ure 2 e, Figures S23–S24). This result suggests that silver cat-
ions, which are introduced in excess, are complexed by the pe-
ripheral TEG chains to form a [Agn(Ag12LTEG)6](n ++ 12)++ species.
Therefore, contrary to previous observations which showed

that Ag+ allows oxidation of exTTF derivatives,[8a] no oxidation
of the system can be observed in the present case in this

medium, presumably because of the binding of Ag+ cations

by the lateral TEG chains. One can note that addition of a sup-
plementary excess of AgBF4 (up to 30 equiv.) did not affect the
1H NMR spectrum either (Figure S25). Nevertheless, while cage
[Ag12(LTEG)6]12 ++ is stable in a CD3NO2/CDCl3 solution for

weeks, a slight gray suspension appears and the subsequent
formation of light greenish insoluble monocrystals that could

be easily isolated in 66 % yield by filtration, was observed after
one week in the same solvent mixture. An X-ray diffraction
analysis of the latter reveals that the initial self-assembled cage
structure [Ag12(LTEG)6]12 ++ undergoes a structural evolution fol-

lowing a self-oxidation process, into an infinite three-dimen-
sional supramolecular polymer [(Ag2LTEGox)4++]x (Figure 5), for

which all the exTTF units have been oxidized into the dication-
ic state (LTEGox). This process is supposed to occur through a
kinetically delayed oxidation process promoted by the silver
cations bound to the TEG units and, to the best of our knowl-

edge, corresponds to a unique example of a supramolecular
transformation between a discrete cage and a 3D-polymer. Fi-

nally, addition of reducing agent tetrakis(dimethylamino)eth-
ylene (TDAE) to a suspension of [(Ag2LTEGox)4++]x in a CD3NO2/

CDCl3 mixture, leads to the instantaneous formation of the

neutral ligand LTEG, without reformation of the initial cage.
The polycationic polymeric backbone [(Ag2LTEGox)4 ++]x is

constituted from the repeating (Ag2LTEGox)4 + unit (Figure 6 a),
in which the ligand is oxidized to its dicationic state (LTEGox),

with typical C@C bond lengths of 1.47 a between 1,3-dithioli-
um rings and the planar central anthracene moiety, and with

Figure 4. Normalized cyclic voltammogram of ligand LTEG (C = 10@3 m,
CH3CN) and of cages Pd12(LTEG)6 (C = 5 V 10@4 m, CH3CN/CH2Cl2 (1/1)) and
[Ag12(LTEG)6]12 ++ (C = 5 V 10@4 m, CH3NO2/CH2Cl2 (1/1)), 0.1 m nBu4NPF6,
100 mV s@1, GC, V vs. Fc/Fc+ .

Figure 5. X-ray structure of the three-dimensional supramolecular polymer
[(Ag2LTEGox)4 ++]x ; BF4

@ anions are located in the free space; view along the a
axis (a); along the c axis (b).
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corresponding dihedral angles of 83.48. The TEG chains display

a key role in structuring the polymer, since they contribute, in

addition to two pyridine units (N–Ag–N = 1578), to coordinate
silver cations (Figure 6 b). Consequently, three independent

exTTF ligands are simultaneously involved in the silver coordi-
nation. One can note that a coordination polymer constructed

from a tetrathiafulvalene ligand bearing a crown ether moiety
has already been described, but the latter binding site was not

involved in the polymeric construction.[14]

In summary, we report herein the preparation of two elec-
tro-active M12L6 cages constructed from an electron-rich exTTF

ligand and associating palladium or silver complexes with a
linear coordination geometry. The resulting cavities display

very large volumes of about 4000 a3. Thanks to the unique fea-
ture of the exTTF unit to drastically change its geometry

through a redox stimulus, we demonstrate that a discrete cage
[Ag12(LTEG)6]12 ++ can evolve into a polycationic three-dimen-
sional supramolecular polymer [(Ag2LTEGox)4++]x upon oxida-

tion, and that the latter is induced by silver cations coordinat-
ed in the TEG chains. To the best of our knowledge, this supra-

molecular transformation constitutes a first example of a struc-
tural evolution from a discrete coordination cage to a three-di-

mensional supramolecular polymer; two major classes of

supramolecular coordination compounds. In addition, even
though several examples of coordination polymers based on

the parent tetrathiafulvalene unit are described,[15]

[(Ag2LTEGox)4++]x constitutes the first example of a three-dimen-

sional coordination network involving an exTTF derivative.
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