138 research outputs found

    Leishmania Mitochondrial Peroxiredoxin Plays a Crucial Peroxidase-Unrelated Role during Infection: Insight into Its Novel Chaperone Activity

    Get PDF
    Two-cysteine peroxiredoxins are ubiquitous peroxidases that play various functions in cells. In Leishmania and related trypanosomatids, which lack catalase and selenium-glutathione peroxidases, the discovery of this family of enzymes provided the molecular basis for peroxide removal in these organisms. In this report the functional relevance of one of such enzymes, the mitochondrial 2-Cys peroxiredoxin (mTXNPx), was investigated along the Leishmania infantum life cycle. mTXNPx null mutants (mtxnpx−) produced by a gene replacement strategy, while indistinguishable from wild type promastigotes, were found unable to thrive in a murine model of infection. Unexpectedly, however, the avirulent phenotype of mtxnpx− was not due to lack of the peroxidase activity of mTXNPx as these behaved like controls when exposed to oxidants added exogenously or generated by macrophages during phagocytosis ex vivo. In line with this, mtxnpx− were also avirulent when inoculated into murine hosts unable to mount an effective oxidative phagocyte response (B6.p47phox−/− and B6.RAG2−/− IFN-γ−/− mice). Definitive conclusion that the peroxidase activity of mTXNPx is not required for parasite survival in mice was obtained by showing that a peroxidase-inactive version of this protein was competent in rescuing the non-infective phenotype of mtxnpx−. A novel function is thus proposed for mTXNPx, that of a molecular chaperone, which may explain the impaired infectivity of the null mutants. This premise is based on the observation that the enzyme is able to suppress the thermal aggregation of citrate synthase in vitro. Also, mtxnpx− were more sensitive than controls to a temperature shift from 25°C to 37°C, a phenotype reminiscent of organisms lacking specific chaperone genes. Collectively, the findings reported here change the paradigm which regards all trypanosomatid 2-Cys peroxiredoxins as peroxide-eliminating devices. Moreover, they demonstrate, for the first time, that these 2-Cys peroxiredoxins can be determinant for pathogenicity independently of their peroxidase activity

    Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase Supports Mitochondrial Metabolism and Host-Cell Invasion ofTrypanosoma cruzi

    Get PDF
    Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which producereducing equivalents as follows: the conversion of proline to Δ1-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ1-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusionchromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomericstate composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity,confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infectivestages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that thisenzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi

    Assessment of fungal growth and colonization rate on silicone: preliminary results

    No full text
    none6ZOTTI M; DI PIAZZA S; CERRANO C; A MONTEMARTINI; SGRO C; MARIOTTI MZotti, Mirca; DI PIAZZA, S; Cerrano, Carlo; Montemartini, Aurora; SgrĂČ, Carmela; Mariotti, Maur
    • 

    corecore