40 research outputs found
‘No memory, no desire’: psychoanalysis in Brazil during repressive times
Until recently, the growth and significance of Brazilian psychoanalysis has been neglected in histories of psychoanalysis. Not only is this history long and rich in its professional and cultural dimensions, but there was an especially important ‘event’ – the so-called ‘Cabernite-Lobo affair’ – that took place during the period of the military dictatorship, which can be seen as dramatising some of the issues concerning the erasure of memory in psychoanalysis, especially in connection with political difficulties. In this paper, we provide an outline of the origins and dissemination of psychoanalysis in Brazil before looking again at the Cabernite-Lobo affair in order to examine in a situated way how psychoanalysis engages with political extremism, and particularly to explore the consequences of an unthinking generalisation of the idea of ‘neutrality’ from the consulting room to the institutional setting. We draw especially on Brazilian papers in Portuguese, which have not been accessible in the English-language psychoanalytic literature
An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity
[EN] Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 59-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 39-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 59-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 39-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.This research was supported by grants BFU2006-11230 and BFU2009-11699 from the Spanish Ministerio de Ciencia e Innovacion (MICINN) and by grants ACOM/2006/210 and ACOMP/2009/040 (to CH) and GVPRE/2008/121 (to OF-M) from the Generalitat Valenciana. The latter was the recipient of an I3P postdoctoral contract from the Spanish Consejo Superior de Investigaciones Cientificas and an additional contract from MICINN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fernandez Miragall, O.; Hernandez Fort, C. (2011). An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity. PLoS ONE. 6(7):22617-22617. https://doi.org/10.1371/journal.pone.0022617S226172261767Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Molecular Biology, 32(1-2), 145-158. doi:10.1007/bf00039381Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2), 1-34. doi:10.1016/s0378-1119(02)01056-9Sachs, A. B., Sarnow, P., & Hentze, M. W. (1997). Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 89(6), 831-838. doi:10.1016/s0092-8674(00)80268-8Kozak, M. (1992). Regulation of Translation in Eukaryotic Systems. Annual Review of Cell Biology, 8(1), 197-225. doi:10.1146/annurev.cb.08.110192.001213Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042F�tterer, J., & Hohn, T. (1996). Translation in plants-rules and exceptions. Plant Molecular Biology, 32(1-2), 159-189. doi:10.1007/bf00039382Gale, M., Tan, S.-L., & Katze, M. G. (2000). Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 64(2), 239-280. doi:10.1128/mmbr.64.2.239-280.2000Kozak, M. (2001). Constraints on reinitiation of translation in mammals. Nucleic Acids Research, 29(24), 5226-5232. doi:10.1093/nar/29.24.5226Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. doi:10.1038/334320a0Mokrejš, M., Mašek, T., Vopálenský, V., Hlubuček, P., Delbos, P., & Pospíšek, M. (2009). IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research, 38(suppl_1), D131-D136. doi:10.1093/nar/gkp981Basso, J., Dallaire, P., Charest, P. J., Devantier, Y., & Laliberte, J.-F. (1994). Evidence for an Internal Ribosome Entry Site Within the 5’ Non-translated Region of Turnip Mosaic Potyvirus RNA. Journal of General Virology, 75(11), 3157-3165. doi:10.1099/0022-1317-75-11-3157Levis, C., & Astier-Manifacier, S. (1993). The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes, 7(4), 367-379. doi:10.1007/bf01703392Karetnikov, A., & Lehto, K. (2007). The RNA2 5’ leader of Blackcurrant reversion virus mediates efficient in vivo translation through an internal ribosomal entry site mechanism. Journal of General Virology, 88(1), 286-297. doi:10.1099/vir.0.82307-0Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1997). A Tobamovirus Genome That Contains an Internal Ribosome Entry Site Functionalin Vitro. Virology, 232(1), 32-43. doi:10.1006/viro.1997.8525Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1999). Internal Initiation of Translation Directed by the 5′-Untranslated Region of the Tobamovirus Subgenomic RNA I2. Virology, 263(1), 139-154. doi:10.1006/viro.1999.9928Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prufer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences, 100(15), 8939-8944. doi:10.1073/pnas.1332697100Balvay, L., Rifo, R. S., Ricci, E. P., Decimo, D., & Ohlmann, T. (2009). Structural and functional diversity of viral IRESes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(9-10), 542-557. doi:10.1016/j.bbagrm.2009.07.005Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010Rico, P., & Hern�ndez, C. (2004). Complete nucleotide sequence and genome organization of Pelargonium flower break virus. Archives of Virology, 149(3), 641-651. doi:10.1007/s00705-003-0231-5Martinez-Turino, S., & Hernandez, C. (2010). Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus. Journal of General Virology, 91(12), 3075-3084. doi:10.1099/vir.0.023093-0Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0Rico, P., & Hernández, C. (2009). Characterization of the subgenomic RNAs produced by Pelargonium flower break virus: Identification of two novel RNAs species. Virus Research, 142(1-2), 100-107. doi:10.1016/j.virusres.2009.01.018Koh, D. C.-Y., Wong, S.-M., & Liu, D. X. (2003). Synergism of the 3′-Untranslated Region and an Internal Ribosome Entry Site Differentially Enhances the Translation of a Plant Virus Coat Protein. Journal of Biological Chemistry, 278(23), 20565-20573. doi:10.1074/jbc.m210212200Hellen, C. U. T. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593-1612. doi:10.1101/gad.891101Martínez-Salas, E. (1999). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 10(5), 458-464. doi:10.1016/s0958-1669(99)00010-5Dobrikova, E., Florez, P., Bradrick, S., & Gromeier, M. (2003). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3’ nontranslated region. Proceedings of the National Academy of Sciences, 100(25), 15125-15130. doi:10.1073/pnas.2436464100Belsham, G. J. (2009). Divergent picornavirus IRES elements. Virus Research, 139(2), 183-192. doi:10.1016/j.virusres.2008.07.001Fernández-Miragall, O., Quinto, S. L. de, & Martínez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139(2), 172-182. doi:10.1016/j.virusres.2008.07.009Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I., & Hellen, C. U. T. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proceedings of the National Academy of Sciences, 98(13), 7029-7036. doi:10.1073/pnas.111145798FERNANDEZ-MIRAGALL, O. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9(11), 1333-1344. doi:10.1261/rna.5950603ROBERTSON, M. E. M., SEAMONS, R. A., & BELSHAM, G. J. (1999). A selection system for functional internal ribosome entry site (IRES) elements: Analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA, 5(9), 1167-1179. doi:10.1017/s1355838299990301Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., … Atabekov, J. G. (2002). Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proceedings of the National Academy of Sciences, 99(8), 5301-5306. doi:10.1073/pnas.082107599Xia, X., & Holcik, M. (2009). Strong Eukaryotic IRESs Have Weak Secondary Structure. PLoS ONE, 4(1), e4136. doi:10.1371/journal.pone.0004136Lu, J., Zhang, J., Wang, X., Jiang, H., Liu, C., & Hu, Y. (2006). In vitro and in vivo identification of structural and sequence elements in the 5’ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. Journal of General Virology, 87(12), 3667-3677. doi:10.1099/vir.0.82090-0Yang, L. J., Hidaka, M., Sonoda, J., Masaki, H., & Uozumi, T. (1997). Mutational Analysis of the Potato Virus Y 5′ Untranslated Region for Alteration in Translational Enhancement in Tobacco Protoplasts. Bioscience, Biotechnology, and Biochemistry, 61(12), 2131-2133. doi:10.1271/bbb.61.2131BERGAMINI, G., PREISS, T., & HENTZE, M. W. (2000). Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA, 6(12), 1781-1790. doi:10.1017/s1355838200001679Bradrick, S. S. (2006). The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Research, 34(4), 1293-1303. doi:10.1093/nar/gkl019Lopez de Quinto, S. (2002). IRES-driven translation is stimulated separately by the FMDV 3’-NCR and poly(A) sequences. Nucleic Acids Research, 30(20), 4398-4405. doi:10.1093/nar/gkf569Song, Y., Friebe, P., Tzima, E., Junemann, C., Bartenschlager, R., & Niepmann, M. (2006). The Hepatitis C Virus RNA 3’-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site. Journal of Virology, 80(23), 11579-11588. doi:10.1128/jvi.00675-06Koh, D. C.-Y., Liu, D. X., & Wong, S.-M. (2002). A Six-Nucleotide Segment within the 3’ Untranslated Region of Hibiscus Chlorotic Ringspot Virus Plays an Essential Role in Translational Enhancement. Journal of Virology, 76(3), 1144-1153. doi:10.1128/jvi.76.3.1144-1153.2002Stupina, V. A., Meskauskas, A., McCormack, J. C., Yingling, Y. G., Shapiro, B. A., Dinman, J. D., & Simon, A. E. (2008). The 3’ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA, 14(11), 2379-2393. doi:10.1261/rna.1227808Truniger, V., Nieto, C., González-Ibeas, D., & Aranda, M. (2008). Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlledin cisby an (a)virulence determinant. The Plant Journal, 56(5), 716-727. doi:10.1111/j.1365-313x.2008.03630.xMiller, W. A., Wang, Z., & Treder, K. (2007). The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochemical Society Transactions, 35(6), 1629-1633. doi:10.1042/bst0351629Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353Koh, D. C.-Y., Wang, X., Wong, S.-M., & Liu, D. X. (2006). Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. Virus Research, 122(1-2), 35-44. doi:10.1016/j.virusres.2006.06.008Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017Fraser, C. S., & Doudna, J. A. (2006). Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Reviews Microbiology, 5(1), 29-38. doi:10.1038/nrmicro1558LÓPEZ-LASTRA, M., RIVAS, A., & BARRÍA, M. I. (2005). Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biological Research, 38(2-3). doi:10.4067/s0716-97602005000200003Pacheco, A., & Martinez-Salas, E. (2010). Insights into the Biology of IRES Elements through Riboproteomic Approaches. Journal of Biomedicine and Biotechnology, 2010, 1-12. doi:10.1155/2010/458927Bernstein, J., Sella, O., Le, S.-Y., & Elroy-Stein, O. (1997). PDGF2/c-sismRNA Leader Contains a Differentiation-linked Internal Ribosomal Entry Site (D-IRES). Journal of Biological Chemistry, 272(14), 9356-9362. doi:10.1074/jbc.272.14.9356Scheper, G. C., Voorma, H. O., & Thomas, A. A. M. (1994). Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Letters, 352(3), 271-275. doi:10.1016/0014-5793(94)00975-9Dresios, J., Chappell, S. A., Zhou, W., & Mauro, V. P. (2005). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nature Structural & Molecular Biology, 13(1), 30-34. doi:10.1038/nsmb1031Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L., & Martinez-Salas, E. (2005). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Letters, 579(30), 6803-6808. doi:10.1016/j.febslet.2005.11.015Ishitani, M., Xiong, L., Stevenson, B., & Zhu, J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell, 9(11), 1935-1949. doi:10.1105/tpc.9.11.1935Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. doi:10.1093/nar/gkg59
MIPS: a database for genomes and protein sequences
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz–Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91–93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155–158; Barker et al. (2001) Nucleic Acids Res., 29, 29–32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de)
Arthur Ramos e Anísio Teixeira na década de 1930
O artigo busca mostrar o movimento Escola Nova e autores ligados a ele. Foca-se a atuação de Arthur Ramos, médico que trabalhou ao lado de Anísio Teixeira, eminente pensador escolanovista, quando este foi diretor da instrução pública no Distrito Federal, nos anos 30. Ramos, que tinha fortes ligações com a Psicanálise, dirigiu o Instituto de Higiene Mental, órgão da administração municipal na gestão de Teixeira, onde foi instalada uma Seção de Ortofrenia e Higiene Mental. Ramos atuou empregando Freud, Jung e Adler tendo que adequar as teorias psicológicas que dispunha em meios aplicáveis à educação brasileira. Dados indicam que a inserção da psicanálise na educação foi favorecida pelas idéias deweyanas de Anísio Teixeira. Esse estudo é oriundo de pesquisa bibliográfica focada nas obras de Arthur Ramos: "Educação e Psicanálise" e "A criança problema"
De novo secondary structure motif discovery using RNAProfile
RNA secondary structure plays critical roles in several biological processes. For example, many trans-acting noncoding RNA genes and cis-acting RNA regulatory elements present functional motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We describe here how conserved secondary structure motifs shared by functionally related RNA sequences can be detected through the software tool RNAProfile. RNAProfile takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules.
The method is split into two parts. First, it identifies candidate regions within the input sequences, and associates with each region a locally optimal secondary structure. Then, it compares candidate regions to one another, both at sequence and structure level, and builds motifs exploring the search space through a greedy heuristic. We provide a detailed guide to the different parameters that can be employed, and usage examples showing the different software capabilities