2,071 research outputs found
Density dependence of the symmetry energy from neutron skin thickness in finite nuclei
The density dependence of the symmetry energy around saturation density,
characterized by the slope parameter L, is studied using information provided
by the neutron skin thickness in finite nuclei. An estimate for L is obtained
from experimental data on neutron skins extracted from antiprotonic atoms. We
also discuss the ability of parity-violating elastic electron scattering to
obtain information on the neutron skin thickness in 208Pb and to constrain the
density dependence of the nuclear symmetry energy. The size and shape of the
neutron density distribution of 208Pb predicted by mean-field models is briefly
addressed. We conclude with a comparative overview of the L values predicted by
several existing determinations.Comment: 17 pages, 10 figures, submitted to EPJA special volume on Nuclear
Symmetry Energ
Influence of the single-particle structure on the nuclear surface and the neutron skin
We analyze the influence of the single-particle structure on the neutron
density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes.
The nucleon density distributions are calculated in the Hartree-Fock+BCS
approach with the SLy4 Skyrme force. A close correlation is found between the
quantum numbers of the valence neutrons and the changes in the position and the
diffuseness of the nuclear surface, which in turn affect the neutron skin
thickness. Neutrons in the valence orbitals with low principal quantum number
and high angular momentum mainly displace the position of the neutron surface
outwards, while neutrons with high principal quantum number and low angular
momentum basically increase the diffuseness of the neutron surface. The impact
of the valence shell neutrons on the tail of the neutron density distribution
is discussed.Comment: 17 pages, 14 figure
Nuclear symmetry energy and neutron skin thickness
The relation between the slope of the nuclear symmetry energy at saturation
density and the neutron skin thickness is investigated. Constraints on the
slope of the symmetry energy are deduced from the neutron skin data obtained in
experiments with antiprotonic atoms. Two types of neutron skin are
distinguished: the "surface" and the "bulk". A combination of both types forms
neutron skin in most of nuclei. A prescription to calculate neutron skin
thickness and the slope of symmetry energy parameter from the parity
violating asymmetry measured in the PREX experiment is proposed.Comment: 12 pages, 5 figures, Presented at XXXII Mazurian Lakes Conference on
Physics, Piaski, Poland, September 11-18, 201
Theoretical study of elastic electron scattering off stable and exotic nuclei
Results for elastic electron scattering by nuclei, calculated with charge
densities of Skyrme forces and covariant effective Lagrangians that accurately
describe nuclear ground states, are compared against experiment in stable
isotopes. Dirac partial-wave calculations are performed with an adapted version
of the ELSEPA package. Motivated by the fact that studies of electron
scattering off exotic nuclei are intended in future facilities in the
commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from
neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic
chains. The charge densities of a covariant interaction that describes the
low-energy electromagnetic structure of the nucleon within the Lagrangian of
the theory are used to this end. The study is restricted to medium and heavy
mass nuclei because the charge densities are computed in mean field approach.
Since the experimental analysis of scattering data commonly involves
parameterized charge densities, as a surrogate exercise for the yet unexplored
exotic nuclei, we fit our calculated mean field densities with Helm model
distributions. This procedure turns out to be helpful to study the
neutron-number variation of the scattering observables and allows us to
identify correlations of potential interest among some of these observables
within the isotopic chains.Comment: 18 pages, 14 figures, revtex4; modifications in text and figure
A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge.
C3H/HeN female mice were vaccinated with native Chlamydia muridarum major outer membrane protein (MOMP), using Montanide+CpG or Alum+CpG as adjuvants. Negative control groups were immunized with ovalbumin (OVA) and the same adjuvants. As positive control, mice were inoculated intranasally with live Chlamydia. Mice were challenged in the ovarian bursa with 10(5) C. muridarum inclusion forming units. Six weeks after the genital challenge the animals were caged with male mice and monitored for pregnancy. Mice vaccinated with MOMP+Montanide+CpG developed high levels of C. muridarum-specific antibodies, with a high IgG2a/IgG1 ratio and neutralizing titres. Animals immunized using Alum+CpG had low antibody levels. Cellular immune responses were significantly higher in mice vaccinated with MOMP and Montanide+CpG, but not with Alum+CpG, when compared with negative controls. Following the genital challenge, only 20% (4/20) of mice vaccinated with MOMP+CpG+Montanide had positive vaginal cultures whereas 100% (9/9) of mice immunized with MOMP+CpG+Alum had positive cultures. Of the positive control animals inoculated with live Chlamydia only 15% (3/20) had positive vaginal cultures. In contrast, 100% (20/20) of mice immunized with OVA+CpG+Montanide, or minimal essential medium, had positive cultures. Following mating, 80% (16/20) of mice vaccinated with MOMP+CpG+Montanide, and 85% (17/20) of animals inoculated intranasally with live C. muridarum carried embryos in both uterine horns. No protection against infertility was observed in mice immunized with MOMP and CpG+Alum or OVA. In conclusion, this is the first time that a subunit vaccine has been shown to elicit a protective immune response in the highly susceptible C3H/HeN strain of mice against an upper genital challenge
Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment
A precise determination of the neutron skin thickness of a heavy nucleus sets
a basic constraint on the nuclear symmetry energy (the neutron skin thickness
is the difference of the neutron and proton rms radii of the nucleus). The
parity radius experiment (PREX) may achieve it by electroweak parity-violating
electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field
approach to allow the accurate extraction of the neutron skin thickness of
208Pb from the parity-violating asymmetry probed in the experiment. We
demonstrate a high linear correlation between the parity-violating asymmetry
and the neutron skin thickness in successful mean field forces as the best
means to constrain the neutron skin of 208Pb from PREX, without assumptions on
the neutron density shape. Continuation of the experiment with higher precision
in the parity-violating asymmetry is motivated since the present method can
support it to constrain the density slope of the nuclear symmetry energy to new
accuracy.Comment: 4 pages, 3 figures, some changes in text and references, version to
appear in Phys. Rev. Let
Origin of the neutron skin thickness of 208Pb in nuclear mean-field models
We study whether the neutron skin thickness (NST) of 208Pb originates from
the bulk or from the surface of the nucleon density distributions, according to
the mean-field models of nuclear structure, and find that it depends on the
stiffness of the nuclear symmetry energy. The bulk contribution to NST arises
from an extended sharp radius of neutrons, whereas the surface contribution
arises from different widths of the neutron and proton surfaces. Nuclear models
where the symmetry energy is stiff, as typical relativistic models, predict a
bulk contribution in NST of 208Pb about twice as large as the surface
contribution. In contrast, models with a soft symmetry energy like common
nonrelativistic models predict that NST of 208Pb is divided similarly into bulk
and surface parts. Indeed, if the symmetry energy is supersoft, the surface
contribution becomes dominant. We note that the linear correlation of NST of
208Pb with the density derivative of the nuclear symmetry energy arises from
the bulk part of NST. We also note that most models predict a mixed-type
(between halo and skin) neutron distribution for 208Pb. Although the halo-type
limit is actually found in the models with a supersoft symmetry energy, the
skin-type limit is not supported by any mean-field model. Finally, we compute
parity-violating electron scattering in the conditions of the 208Pb parity
radius experiment (PREX) and obtain a pocket formula for the parity-violating
asymmetry in terms of the parameters that characterize the shape of the 208Pb
nucleon densities.Comment: 11 pages, 4 figures; minor stylistic changes in text, new Ref. [56]
added (new measurement of the neutron skin thickness of 208Pb
Low-lying dipole response: isospin character and collectivity in Ni, Sn and Pb
The isospin character, the collective or single-particle nature, and the
sensitivity to the slope of the nuclear symmetry energy of the low-energy
isovector dipole response (known as pygmy dipole resonance) are nowadays under
debate. In the present work we study, within the fully self-consistent
non-relativistic mean field (MF) approach based on Skyrme Hartree-Fock plus
Random Phase Approximation (RPA), the measured even-even nuclei Ni,
Sn and Pb. To analyze the model dependence in the
predictions of the pygmy dipole strength, we employ three different Skyrme
parameter sets. We find that both the isoscalar and the isovector dipole
responses of all three nuclei show a low-energy peak that increases in
magnitude, and is shifted to larger excitation energies, with increasing values
of the slope of the symmetry energy at saturation. We highlight the fact that
the collectivity associated with the RPA state(s) contributing to this peak is
different in the isoscalar and isovector case, or in other words it depends on
the external probe. While the response of these RPA states to an isovector
operator does not show a clear collective nature, the response to an isoscalar
operator is recognizably collective, for {\it all} analyzed nuclei and {\it
all} studied interactions.Comment: Submitted to Phys. Rev.
CTQ 414: A New Gravitational Lens
We report the discovery and ground based observations of the new
gravitational lens CTQ 414. The source quasar lies at a redshift of z = 1.29
with a B magnitude of 17.6. Ground based optical imaging reveals two point
sources separated by 1.2 arcsec with a magnitude difference of roughly 1 mag.
Subtraction of two stellar point spread functions from images obtained in
subarcsecond seeing consistently leaves behind a faint, residual object. Fits
for two point sources plus an extended object places the fainter object
collinear with the two brighter components. Subsequent HST/NICMOS observations
have confirmed the identification of the fainter object as the lensing galaxy.
VLA observations at 8.46 GHz reveal that all components of the lensing system
are radio quiet down to the 0.2 mJy flux level.Comment: Latex, 18 pages including 2 ps figures; accepted for publication in
A
- …