The isospin character, the collective or single-particle nature, and the
sensitivity to the slope of the nuclear symmetry energy of the low-energy
isovector dipole response (known as pygmy dipole resonance) are nowadays under
debate. In the present work we study, within the fully self-consistent
non-relativistic mean field (MF) approach based on Skyrme Hartree-Fock plus
Random Phase Approximation (RPA), the measured even-even nuclei 68Ni,
132Sn and 208Pb. To analyze the model dependence in the
predictions of the pygmy dipole strength, we employ three different Skyrme
parameter sets. We find that both the isoscalar and the isovector dipole
responses of all three nuclei show a low-energy peak that increases in
magnitude, and is shifted to larger excitation energies, with increasing values
of the slope of the symmetry energy at saturation. We highlight the fact that
the collectivity associated with the RPA state(s) contributing to this peak is
different in the isoscalar and isovector case, or in other words it depends on
the external probe. While the response of these RPA states to an isovector
operator does not show a clear collective nature, the response to an isoscalar
operator is recognizably collective, for {\it all} analyzed nuclei and {\it
all} studied interactions.Comment: Submitted to Phys. Rev.