75 research outputs found

    Robotic-assisted Versus Open Technique for Living Donor Kidney Transplantation: A Comparison Using Propensity Score Matching for Intention to Treat

    Get PDF
    Living donor robotic-assisted kidney transplantation (RAKT) is an alternative to open kidney transplantation (OKT), but experience with this technique is limited in the United States. METHODS: A retrospective review of living donor kidney transplants performed between 2016 and 2018 compared RAKT with OKT with regard to recipient, donor, and perioperative parameters. A 1:1 propensity score matching was performed on recipient/donor age, sex, body mass index, race, preoperative dialysis, and calculated panel reactive antibodies. RESULTS: Outcomes of patient survival, graft survival, and postoperative complications were assessed for 139 transplants (47 RAKT and 92 OKT). Propensity score analysis (47:47) showed that RAKT recipients had longer warm ischemic times (49 versus 40 min; P \u3c 0.001) and less blood loss (100 versus 150 mL; P = 0.005). Operative time and length of stay were similar between groups. Postoperative serum creatinine was similar during a 2-y follow-up. Post hoc analysis excluding 4 open conversions showed lower operative time with RAKT (297 versus 320 min; P = 0.04) and lower 30-d (4.7% versus 23.4%; P = 0.02) and 90-d (7% versus 27.7%; P = 0.01) Clavien-Dindo grade ≥3 complications. CONCLUSIONS: Our findings suggest that RAKT is a safe alternative to OKT

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Efficacy of a 3 month training program on the jump-landing technique in jump-landing sports. Design of a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the relatively high rate of injuries to the lower extremity due to jump-landing movement patterns and the accompanied high costs, there is need for determining potential preventive programs. A program on the intervention of jump-landing technique is possibly an important preventative measure since it appeared to reduce the incidence of lower extremity injuries. In real life situations, amateur sports lack the infrastructure and funds to have a sports physician or therapist permanently supervising such a program. Therefore the current prevention program is designed so that it could be implemented by coaches alone.</p> <p>Objective</p> <p>The objective of this randomized controlled trial is to evaluate the effect of a coach supervised intervention program targeting jump-landing technique on the incidence of lower extremity injuries.</p> <p>Methods</p> <p>Of the 110 Flemish teams of the elite division, 24 teams are included and equally randomized to two study groups. An equal selection of female and male teams with allocation to intervention and control group is obtained. The program is a modification of other prevention programs previously proven to be effective. All exercises in the current program are adjusted so that a more progressive development in the exercise is presented. Both the control and intervention group continue with their normal training routine, while the intervention group carries out the program on jump-landing technique. The full intervention program has a duration of three months and is performed 2 times a week during warm-up (5-10 min). Injuries are registered during the entire season.</p> <p>Discussion</p> <p>The results of this study can give valuable information on the effect of a coach supervised intervention program on jump-landing technique and injury occurrence. Results will become available in 2011.</p> <p>Trial registration</p> <p>Trial registration number: NTR2560</p

    Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals

    Get PDF
    The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species.Funding for this research was provided by grants NSFIIS-0208675 (http://www.nsf.gov/cise/iis/hcc_pgm.jsp), and EAR-0948842 (http://www.nsf.gov/awards/award_visualiz​ation.jsp?org=EAR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Geological SciencesAnthropologyEmail: [email protected]

    Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility

    Get PDF
    Leptictida are basal Paleocene to Oligocene eutherians from Europe and North America comprising species with highly specialized postcranial features including elongated hind limbs. Among them, the European Leptictidium was probably a bipedal runner or jumper. Because the semicircular canals of the inner ear are involved in detecting angular acceleration of the head, their morphometry can be used as a proxy to elucidate the agility in fossil mammals. Here we provide the first insight into inner ear anatomy and morphometry of Leptictida based on high-resolution computed tomography of a new specimen of Leptictidium auderiense from the middle Eocene Messel Pit (Germany) and specimens of the North American Leptictis and Palaeictops. The general morphology of the bony labyrinth reveals several plesiomorphic mammalian features, such as a secondary crus commune. Leptictidium is derived from the leptictidan groundplan in lacking the secondary bony lamina and having proportionally larger semicircular canals than the leptictids under study. Our estimations reveal that Leptictidium was a very agile animal with agility score values (4.6 and 5.5, respectively) comparable to Macroscelidea and extant bipedal saltatory placentals. Leptictis and Palaeictops have lower agility scores (3.4 to 4.1), which correspond to the more generalized types of locomotion (e.g., terrestrial, cursorial) of most extant mammals. In contrast, the angular velocity magnitude predicted from semicircular canal angles supports a conflicting pattern of agility among leptictidans, but the significance of these differences might be challenged when more is known about intraspecific variation and the pattern of semicircular canal angles in non-primate mammals

    Barriers to Predicting the Mechanisms and Risk Factors of Non-Contact Anterior Cruciate Ligament Injury

    Get PDF
    High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury

    Micromotion at the Tibial Plateau in Primary and Revision Total Knee Arthroplasty: Fixed Versus Rotating Platform Designs

    No full text
    OBJECTIVES: Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. METHODS: Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques. RESULTS: Rotational malalignment between femoral and tibial components generated 40% less overall tibial tray micromotion in RP designs than in standard fixed bearing tibial trays. RP trays reduced micromotion by up to 172 µm in axial compression and 84 µm in rotational malalignment models. CONCLUSIONS: Reduced torque transfer at the tibiofemoral interface in RP tibial trays reduces relative component micromotion and may aid long-term stability in cases of revision TKA or poor bone quality. Cite this article: Mr S. R. Small. Micromotion at the tibial plateau in primary and revision total knee arthroplasty: fixed versus rotating platform designs. Bone Joint Res 2016;5:122–129. DOI: 10.1302/2046-3758.54.2000481

    Magnetic Resonance Imaging Abnormalities of the Optic Nerve Sheath and Intracranial Internal Carotid Artery in Giant Cell Arteritis

    No full text
    Background: Giant cell arteritis (GCA) is an important diagnostic consideration in elderly patients with vision changes. Superficial temporal artery biopsy (TAB) has long been considered the gold standard diagnostic approach for GCA, but MRI has gained interest as an alternative diagnostic modality. Although most of the literature has focused on imaging abnormalities of branches of the external carotid artery, there have been a few reports of GCA-related inflammatory involvement of the orbit and internal carotid arteries (ICAs) on MRI
    corecore