263 research outputs found

    Seawater cadmium in the Florida Straits over the Holocene and implications for Upper AMOC variability

    Get PDF
    Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS)

    Central Equatorial Pacific Cooling During the Last Glacial Maximum

    Get PDF
    Establishing tropical sea surface temperature (SST) during the Last Glacial Maximum (LGM) is important for constraining equilibrium climate sensitivity to radiative forcing. Until now, there has been little data from the central equatorial Pacific in global compilations, with foraminiferal assemblage‐based estimates suggesting the region was within 1°C of modern temperatures during the LGM. This is in stark contrast to multi‐proxy evidence from the eastern and western Pacific and model simulations which support larger cooling. Here we present the first estimates of glacial SST in the central equatorial Pacific from Mg/Ca in Globigerinoides ruber. Our results show that the central Pacific cooled by about 2.0°C during the LGM, in contrast with previous global compilations but in agreement with models. Our data support a larger magnitude of tropical LGM cooling, and thus a larger equilibrium climate sensitivity, than previous studies which relied on foraminiferal assemblages in the central tropical Pacific

    Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6

    Get PDF
    Over the past decades, tropical stalagmite δ^(18)O records have provided valuable insight on glacial and interglacial hydrological variability and its relationship to a variety of natural climate forcings. The transition out of the penultimate glaciation (MIS 6) represents an important target for tropical hydroclimate reconstructions, yet relatively few such reconstructions resolve this transition. Particularly, comparisons between Termination 1 and 2 provide critical insight on the extent and influence of proposed climate mechanisms determined from paleorecords and model experiments spanning the recent deglaciation. Here we present a new compilation of western tropical Pacific hydrology spanning 0–160 ky BP, constructed from eleven different U/Th-dated stalagmite δ^(18)O records from Gunung Mulu National Park in northern Borneo. The reconstruction exhibits significant precessional power in phase with boreal fall insolation strength over the 0–160 ky BP period, identifying precessional insolation forcing as the dominant driver of hydroclimate variability in northern Borneo on orbital timescales. A comparison with a network of paleoclimate records from the circum-Pacific suggests the insolation sensitivity may arise from changes in the Walker circulation system. Distinct millennial-scale increases in stalagmite δ^(18)O, indicative of reduced regional convection, occur within glacial terminations and may reflect a response to shifts in inter-hemispheric temperature gradients. Our results imply that hydroclimate in this region is sensitive to external forcing, with a response dominated by large-scale temperature gradients

    The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization

    Get PDF
    The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors' previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed toward the warmed hemisphere. Comparisons with a comprehensive GCM in an identical aquaplanet, mixed-layer framework reveal that the tropical responses tend to be much larger in the comprehensive GCM as a result of positive cloud and water vapor feedbacks that amplify the imposed extratropical thermal forcing. The magnitude of the tropical precipitation response in the idealized model is sensitive to convection scheme parameters. This sensitivity as well as the tropical precipitation response can be understood from a simple theory with two ingredients: the changes in poleward energy fluxes are predicted using a onedimensional energy balance model and a measure of the "total gross moist stability" [??m, which is defined as the total (mean plus eddy) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change into a mass flux and a moisture flux change. The idealized model produces a low level of compensation of about 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics regardless of the convection scheme parameter. Because Geophysical Fluid Dynamics Laboratory Atmospheric Model 2 (AM2) with prescribed clouds and water vapor exhibits a similarly low level of compensation, it is argued that roughly 25% of the compensation is dynamically controlled through eddy energy fluxes. The sensitivity of the tropical response to the convection scheme in the idealized model results from different values of ??m: smaller ??m leads to larger tropical precipitation changes for the same response in the energy transport.open624

    Enhanced El Niño‐Southern Oscillation variability in recent decades

    Get PDF
    The El Nino-Southern Oscillation (ENSO) represents the largest source of year-to-year global climate variability. While Earth system models suggest a range of possible shifts in ENSO properties under continued greenhouse gas forcing, many centuries of preindustrial climate data are required to detect a potential shift in the properties of recent ENSO extremes. Here we reconstruct the strength of ENSO variations over the last 7,000 years with a new ensemble of fossil coral oxygen isotope records from the Line Islands, located in the central equatorial Pacific. The corals document a significant decrease in ENSO variance of similar to 20% from 3,000 to 5,000 years ago, coinciding with changes in spring/fall precessional insolation. We find that ENSO variability over the last five decades is similar to 25% stronger than during the preindustrial. Our results provide empirical support for recent climate model projections showing an intensification of ENSO extremes under greenhouse forcing.Plain Language Summary Recent modeling studies suggest that El Nino will intensify due to greenhouse warming. Here new coral reconstructions of the El Nino-Southern Oscillation (ENSO) record sustained, significant changes in ENSO variability over the last 7,000 years and imply that ENSO extremes of the last 50 years are significantly stronger than those of the preindustrial era in the central tropical Pacific. These records suggest that El Nino events already may be intensifying due to anthropogenic climate change

    Comparison of observed and general circulation model derived continental subsurface heat flux in the Northern Hemisphere

    Get PDF
    Heat fluxes in the continental subsurface were estimated from general circulation model (GCM) simulations of the climate of the last millennium and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions (BBCs) that are less than 10 m deep and thus may be thermodynamically restricted in the continental subsurface, we used an idealized land surface model (LSM) with a very deep BBC to estimate the potential for realistic subsurface heat storage in the absence of bottom boundary constraints. Results indicate that there is good agreement between observed fluxes and GCM simulated fluxes for the 1780-1980 period when the GCM simulated temperatures are coupled to the LSM with deep BBC. These results emphasize the importance of placing a deep BBC in GCM soil components for the proper simulation of the overall continental heat budget. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes lends additional support to the overall quality of the GCM (ECHO-G) paleoclimatic simulations
    corecore