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Central Equatorial Pacific Cooling During the Last
Glacial Maximum

Minda Moriah Monteagudo' (2, Jean Lynch-Stieglitz' ¢, Thomas M. Marchitto® ), and
Matthew W. Schmidt®

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA, 2Department
of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA,
*Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA

Abstract Establishing tropical sea surface temperature (SST) during the Last Glacial Maximum
(LGM) is important for constraining equilibrium climate sensitivity to radiative forcing. Until now,

there has been little data from the central equatorial Pacific in global compilations, with foraminiferal
assemblage-based estimates suggesting the region was within 1°C of modern temperatures during the
LGM. This is in stark contrast to multi-proxy evidence from the eastern and western Pacific and model
simulations which support larger cooling. Here we present the first estimates of glacial SST in the central
equatorial Pacific from Mg/Ca in Globigerinoides ruber. Our results show that the central Pacific cooled by
about 2.0°C during the LGM, in contrast with previous global compilations but in agreement with models.
Our data support a larger magnitude of tropical LGM cooling, and thus a larger equilibrium climate
sensitivity, than previous studies which relied on foraminiferal assemblages in the central tropical Pacific.

Plain Language Summary Reconstructing how tropical Pacific climate changed during
periods of variable atmospheric CO, levels may improve our understanding of how this region will
respond to anthropogenic forcing. The Last Glacial Maximum, (LGM, 19-23,000 years before present),

is the most recent time in earth history when atmospheric CO, was significantly different than pre-
Industrial values. Proxy-based reconstructions of LGM sea surface temperatures (SSTs) are often used as a
point of comparison with output from climate models. These models indicate ~2°C cooling in the central
equatorial Pacific during the LGM, in contrast with earlier microfossil-based estimates which suggest very
little LGM cooling. Here, we use the chemistry of unicellular protists called foraminifera to estimate SSTs
during the LGM in the central equatorial Pacific. Our data show that the central equatorial Pacific cooled
by about 2°C during the LGM, in agreement with models and supporting the notion that this region may
be more sensitive to CO, change than previously suggested.

1. Introduction

The tropical Pacific has been shown to be a dominant influence on global climate, from interannual to
glacial-interglacial timescales; however, much uncertainty surrounds the evolution of the tropical Pacif-
ic Ocean-atmosphere system in response to varying atmospheric CO, levels. The Last Glacial Maximum
(LGM, 19-23 ka) serves as an important interval for studying equilibrium climate sensitivity since the
forcing is both large and fairly well-constrained, and multiple proxies exist to estimate the temperature
response. LGM tropical sea surface temperature (SST), in particular, may be more significantly correlated
with climate sensitivity than mean global temperature, given the lessened impact of high latitude forcings
on tropical records (Hargreaves et al., 2012; Hopcroft & Valdes, 2015; Schmidt et al., 2014). Thus, the mag-
nitude of tropical cooling during the LGM from proxy-based reconstructions is an important constraint on
equilibrium climate sensitivity estimates (Hargreaves et al., 2012; Lea, 2004).

At present, both the magnitude and spatial pattern of tropical Pacific SST changes during the LGM remain
uncertain. The Climate Long-Range Investigation Mapping and Prediction (CLIMAP) project’s synthesis of
glacial SST showed little to no SST change in the glacial central tropical Pacific, based largely on foraminife-
ral assemblages (CLIMAP Project Members, 1976). More recently, the Multiproxy Approach for the Recon-
struction of the Glacial Ocean Surface (MARGO) project incorporated geochemical SST proxies, yet reiter-
ated CLIMAP’s finding of little to no SST change in the central tropical Pacific (Waelbroeck et al., 2009).
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0 However, it should be noted that there were very few geochemical meas-
e (o) urements in the MARGO compilation from the central tropical Pacific
and the MARGO project had to rely on foraminiferal assemblage data,
-1000 much of it generated for the early CLIMAP study. In contrast, geochem-
ical records from the eastern and western equatorial Pacific from Mg/
Ca (Benway et al., 2006; Bolliet et al., 2011; Dang et al., 2020; de Garidel-
1-2000 Thoron et al., 2005, 2007; Hertzberg et al., 2016; Hollstein et al., 2018;
Koutavas & Joanides, 2012; Koutavas et al., 2002; Lea et al., 2000, 2006;
Leduc et al., 2007; Rosenthal et al., 2003; Sagawa et al., 2012; Steinke
et al., 2006; Stott et al., 2002, 2007), alkenones (Kienast et al., 2001; Kout-
avas & Sachs, 2008; Leduc et al., 2007), TEXgs (Hertzberg et al., 2016), and
-4000 clumped isotopes (Tripati et al., 2014) indicate 1°C-4°C cooling. Several
proxy-based analyses indicate that the magnitude of overall tropical ocean
cooling was likely 2.0°C-3.0°C (Ballantyne et al., 2005; Crowley, 2000),
. -5000 much larger than the moderate cooling suggested by CLIMAP and MAR-
-158 -156  Depth (m) GO. Most recently, a multi-proxy data assimilation study showed 3.5°C
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Longitude (°W) of global tropical ocean cooling (Tierney et al., 2020). Terrestrial proxy

records are also incompatible with CLIMAP/MARGO SSTs, as depressed

Figure 1. Bathymetric map (Amante & Eakins, 2009) of Line Islands core  tropical snowlines indicate ~4°C-6°C cooling (Rind & Peteet, 1985; Web-

sites presented in this study (white markers).

Table 1
Regional Estimates of Tropical (15°N-15°S) LGM Cooling (°C)

ster & Streten, 1978). Given that lower atmospheric CO, should cause
cooling, it remains difficult to explain why central tropical Pacific SSTs
would be similar to modern during the LGM. Global climate model sim-
ulations driven with LGM boundary conditions suggests 2.0°C-2.5°C cooling in the central tropical Pacific
and suggest a similar degree of cooling in the central tropical Pacific as in the eastern and western parts of
the basin (Brady et al., 2013; DiNezio et al., 2011; Otto-Bliesner et al., 2009).

Here, we present the first estimates of central equatorial Pacific SSTs during the LGM using the Mg/Ca ratio
of the surface-dwelling foraminifera Globigerinoides ruber from a meridional transect of sediment cores
from the Line Islands. We also combine our data with existing tropical G. ruber Mg/Ca data to present a
more complete view of tropical SST changes during the LGM.

2. Materials and Methods
2.1. Line Islands Sediment Cores and Age Models

The cores used in this study (Figure 1) were collected along the Line Islands Ridge, a NW-SE trending ba-
thymetric rise in the central equatorial Pacific (Table 1), west of the Eastern Pacific Cold Tongue. Seasonal
temperature and salinity variability at the Line Islands is low: 0.7°C-1.0°C and 0.2-0.5 PSU, respectively,
increasing from the equator to 7°N (Schmidtko et al., 2013). Locations south of 2°N (~27°C) are supplied
with cooler water from the subsurface by equatorial upwelling, as well as from the Eastern Pacific via the
South Equatorial Current. Warmer surface waters (~28°C) north of 2° latitude are supplied from the West-
ern Pacific via the North Equatorial Countercurrent.

The cores presented in this study span from 0.22°S to 7.04°N, 155.96 to 161.63°W, and 2,371-3,597 m wa-
ter depth. Sedimentation rates range from ~1.7 to 3.5 cm/kyr, decreasing with distance from the equa-
tor (Lynch-Stieglitz et al., 2015). Radiocarbon measurements were made on samples of the planktonic
foraminifera G. ruber or Trilobatus sacculifer (350-500 um size fraction) at the National Ocean Sciences
Accelerator Mass Spectrometry facility at Woods Hole. Radiocarbon ages
(Table S1) were converted to calendar ages using CALIB 7.1 and the Ma-
rinel3 calibration curve, with the standard marine reservoir correction
(R =400 years) (Reimer et al., 2013). Age models for each core were con-

structed by linearly interpolating between radiocarbon measurements.

Atlantic Indian Pacific Global . . .
Due to low-sedimentation rates above 2°N and recent carbonate dissolu-
MARGO —29%13 —14+07 -l2x1l  -17+10 tion, Late Holocene (0-4 ka) core-tops were available only for the south-
This study —29+£04  —27+01 2501 -26%01 ern portion of our transect. The age models were used to establish the
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depth ranges for Late Holocene (0-4 ka), Mid-Holocene (4-8 ka), and LGM (19-23 ka) time slices. Samples
from depths within the above time slices were analyzed for Mg/Ca. Cores 27BB, 34BB and 36BB feature age
reversals in the upper 8 cm; data above the age reversal are not used.

2.2. Analytical Methods for Line Islands Sediment Cores

G. ruber 8'°0 data for all but one of the sediment core sites were published and discussed previously
(Lynch-Stieglitz et al., 2015). We generated data for sediment core ML1208-32BB and the multicore tops
as part of this study. 5'®0 measurements were conducted on a Thermo MAT253 Stable Isotope Mass
Spectrometer coupled to a Kiel IV Carbonate Device at Georgia Tech. 15 G. ruber individuals were ana-
lyzed from the 250-355 um size fraction. §'®0 measurements were converted to PDB using an in-house
standard and NBS-19. Reproducibility of the in-house standard was +0.045%o for §'*0 and +0.014%o for
8C (1 sigma).

For Mg/Ca measurements, ~60 individual G. ruber were selected from the 250-355 pm size fraction,
gently crushed, homogenized, and split into two aliquots for replicate measurements, except where
noted (Table S2). G. ruber is a symbiont-bearing foraminifera which confines its calcification depth to
the upper ~50 (e.g., Schiebel & Hemleben, 2005) or 100 m (Rippert et al., 2016). G. ruber (sensu stricto)
was picked whenever possible, though some sensu lato were necessary for sufficient sample masses.
Oxygen isotopic measurements have shown no offset between morphotypes at the Line Islands, sug-
gesting similar calcification depths (Lynch-Stieglitz et al., 2015). Mg/Ca samples were cleaned using
both reductive and oxidative steps (Boyle & Rosenthal, 1996). The majority of measurements were
done at University of Colorado, Boulder on a Thermo Element 2 ICP-MS. As indicated in the data
supplement, some samples were cleaned and analyzed at Old Dominion University, with two cores
(28BB and 37BB) cleaned and analyzed at Texas A&M University. Cleaning methods were consistent
between labs and replicate measurements were used as inter-laboratory comparison (see supporting
information Text S1; Figure S1) and show no systematic interlaboratory offset. Internal standards at
CU Boulder are validated against powdered community standards BAM RS3, ECRM 752-1, and CMSI
1767 (Greaves et al., 2008). Al/Ca, Mn/Ca and Fe/Ca ratios were monitored for possible contamination
and anomalously high values (>100 umol/mol) were discarded (n = 1). Average reproducibility based
on 94 replicate measurements was +0.22 mmol/mol.

Mg/Ca measurements are converted to SST using the A[CO%’]—corrected calibration of Dekens
et al. (2002), which gives the best match to climatology (see supporting information Text S2, Figure S2,
Table S3). We used modern bottom water [CO3 | values computed using World Ocean Circulation Exper-
iment (WOCE) P16 N measurements and CO2SysV2.1 for Excel. Sensitivity tests were performed using
estimates of LGM Pacific A{CO3 "] changes, though these are generally believed to be small in magnitude
(See supporting information Text S3, Figure S3). Late Holocene SSTs agree with climatological mean
annual SSTs (Schmidtko et al., 2013) within the calibration error (Figure 2). It should be noted, however,
that G. ruber Mg/Ca can also influenced by salinity (e.g., Lea et al., 1999; Niirnberg et al., 1996; Russell
et al., 2004), carbonate chemistry conditions during calcification, expressed as either pH or [CO5”] (e.g.,
Evans et al., 2016; Gray et al., 2018). It has also recently been shown that the canonical ~9% sensitivity
of Mg/Ca to temperature may overestimate the pure thermal component (Gray & Evans, 2019). Several
multivariate calibrations have been published (Gray & Evans, 2019; Khider et al., 2015; Saenger & Ev-
ans, 2019; Tierney et al., 2019). The implications of these other Mg/Ca calibrations are discussed in the
supporting information, but do not change the main conclusions of this work (supporting information
Text S4, Figure S4).

2.3. Global G. ruber Mg/Ca Compilation

We compiled available LGM Mg/Ca data for G. ruber (white) from the literature (Table S5). We only com-
pile data from G. ruber, as T. sacculifer, the other ubiquitous tropical surface-dwelling foraminifera species,
has been shown to add significant amounts of gametogenic calcite at depth (Spero & Lea, 1993; Wycech
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Figure 2. Mean G. ruber Mg/Ca-derived SST estimates for the Late Holocene (0-4 ka, gray symbols), Mid-Holocene
(4-8 ka, red symbols), and LGM (19-23 ka, blue symbols) compared to modern mean annual SST (black line)
(Schmidtko et al., 2013). All temperature estimates are calculated using the Dekens et al. (2002) calibration. Solid lines
show the modern climatological SST (black), the modern SST shifted by —0.6°C (red) and —2.6°C (blue). The shaded
regions denote the 1.2°C calibration standard error of estimate (Dekens et al., 2002). Error bars show the standard error
of the mean for data within a given time slice. A cooling of 2.0 degrees between the Late Holocene and LGM is inferred.
LGM, last glacial maximum; SST, sea surface temperature.

et al., 2018), which may complicate the interpretation of T. sacculifer Mg/Ca as a purely SST signal. Cores
located between 15°N and 15°S with radiocarbon dated LGM sections and G. ruber (212-355 um) Mg/Ca
data were selected. G. ruber (sensu stricto) data were used where available and noted, however some studies
did not distinguish which morphotype was used. G. ruber (pink) data from the Atlantic was not included
except one study which used G. ruber pink occasionally to increase sample size (Lea et al., 2003). Mg/
Ca values between 0 and 4 ka (Late Holocene) and 19-23 ka (LGM) were averaged, as determined by the
age models in the original publications. Raw Mg/Ca values were first corrected to account for differing
cleaning methods, with a 10% correction applied to cores that omit the reductive cleaning step, as it has
been shown that the reductive step reduces Mg/Ca ratios by ~10% (Barker et al., 2003). Average Mg/Ca
ratios were converted to SST using the Dekens et al. (2002) A[CO3"] calibration using modern bottom
water [CO%’] for all Late Holocene data and the LGM data in the Pacific Ocean. In the Atlantic, LGM A[
CO;3"] values were adjusted by +19 pmol/kg above 2.8 km water depth and -21 pmol/kg below this depth
(supporting information Text S5). The magnitude of LGM cooling is calculated by taking the difference
between Late Holocene and LGM Mg/Ca SSTs. Where Late Holocene samples are not available, the mag-
nitude of LGM cooling is reported relative to the modern climatology. Mg/Ca temperature estimates for
the global compilation are adjusted by +0.6°C, the mean offset between modern climatological mean an-
nual SST and the Late Holocene Mg/Ca SST found in the global data set (supporting information Text S5).
This prevents the overestimation of the magnitude of LGM cooling for the core sites where cooling is
reported relative to the modern climatological SST. The magnitude of cooling for locations with Late
Holocene Mg/Ca are independent of the application of this offset.

3. Results and Discussion
3.1. LGM Temperature in the Central Equatorial Pacific

For the core sites that have Late Holocene aged sediments at the core top, Late Holocene Line Islands SSTs
are 26.6°C-27.1°C, compared to climatological SSTs of 27.2°C-27.3°C (Figure 2). The Mid-Holocene (4-8
ka) is the most recent time interval for which data is available at all latitudes along our Line Islands Ridge
transect. While there are only three locations for which Late Holocene data are available, there is no indica-
tion of significant changes in temperature between the Mid and Late Holocene (Figure 2). While all cores
show moderately cooler temperature estimates for the Late and Mid-Holocene relative to the climatological
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data (Schmidtko et al., 2013), the offset (-0.6°C) is the same as was found between the Late Holocene and
climatological SST in our global tropical data set. The lack of significant change between the Late and Mid
Holocene is broadly consistent with PMIP2 and PMIP3 6 ka simulations that show only modest SST chang-
es (0.2°C-0.4°C cooling) near the Line Islands (An & Choi, 2014).

Line Islands glacial Mg/Ca SST estimates range from 24.2°C to 26.4°C, indicating cooling at all core sites,
between 1.4°C and 2.8°C (mean = 2.0°C) relative to the Late Holocene. Cores influenced by equatorial
upwelling (—0.22 to 1.27°N) show 2.0°C + 0.2°C (1 sigma standard error) of LGM cooling, as compared
to more northerly cores influenced by the North Equatorial Counter Current which show 1.9°C + 0.1°C.
The glacial-interglacial difference in temperature is reported with the standard error, which approximates
our ability to state the mean value in glacial-interglacial Mg/Ca temperature difference using our chosen
calibration at this location. The error on the individual SST estimates can be approximated using the 1.2°C
calibration error from Dekens et al. (2002). The true glacial-interglacial temperature difference in this re-
gion may differ due to systematic errors in the proxy and calibration which are difficult to quantify without
the consideration of multiple proxies (e.g., Waelbroeck et al., 2009).

Our results do not agree with CLIMAP and MARGO, which suggest little to no SST change near the Line Is-
lands and throughout most of the central Pacific. In contrast, our data are consistent with both model simu-
lations that show ~2.0°C-2.5°C cooling near the Line Islands (Brady et al., 2013; DiNezio et al., 2011) as well
as proxy records from the eastern and western equatorial Pacific (Benway et al., 2006; Bolliet et al., 2011;
Dang et al., 2020; de Garidel-Thoron et al., 2007, 2005; Hertzberg et al., 2016; Hollstein et al., 2018; Koutavas
& Joanides, 2012; Lea et al., 2000, 2006; Leduc et al., 2007; Rosenthal et al., 2003; Sagawa et al., 2012; Steinke
et al., 2006; Stott et al., 2007, 2002; Xu et al., 2010). The recent LGM data assimilation study of Tierney
et al. (2020) shows cooling at our core sites, but of a higher magnitude (—3.9°C) than we find in this study.
Central tropical Pacific cooling is a robust feature of LGM model simulations, but has until now not been
corroborated by proxy reconstructions in the region.

The Line Islands meridional SST gradient is sensitive to changes in zonal currents, local equatorial up-
welling strength, and thermocline depth and tilt, all of which may reflect changes to Pacific Walker Cir-
culation (DiNezio et al., 2011; Lynch-Stieglitz et al., 2015). Today, Northern Line Islands sites are 0.7°C
+ 0.2°C warmer than Southern Line Islands sites. During the Mid-Holocene, the Line Islands meridional
SST gradient remained similar (0.8°C % 0.3°C). During the LGM, the meridional Line Islands SST gradient
was increased to 1.1°C + 0.4°C. While the meridional gradients are not distinguishable within the estimated
errors, it is likely (72%) that the LGM temperature gradient was larger than modern (supporting informa-
tion Text S6). An earlier study (Lynch-Stieglitz et al., 2015) based on this suite of sediment cores found an
enhanced LGM gradient in the 80 of G. ruber calcite for these sediment cores, and discussed how the
enhanced gradient relates to changes in tropical Pacific climate including the Walker Circulation. The Mg/
Ca temperature data clarify that the increased gradient in foraminiferal 8'*0 is partially due to the increased
temperature gradient and partially to an increase in the 80 of seawater (supporting information Text S7,
Figure S5, Table S4).

3.2. Tropical LGM Cooling From G. ruber Mg/Ca

Coupled ocean-atmosphere models consistently simulate stronger and more uniform LGM ocean cooling
than MARGO in the tropical oceans (Braconnot et al., 2007; Brady et al., 2013; DiNezio et al., 2011; Ot-
to-Bliesner et al., 2009). Our compilation of 76 LGM G. ruber Mg/Ca SST estimates also shows a larger
tropical mean LGM cooling than MARGO, 2.6°C + 0.1°C (1 sigma standard error on mean) as compared to
1.7°C + 1.0°C (total error) (Figure 3, Tables 1 and S5). In the Atlantic, our compilation shows 2.9°C + 0.4°C
cooling, in agreement with 2.9°C + 1.3°C from MARGO. However, in the Pacific and Indian oceans, our
compilation indicates 2.5°C £ 0.1°C and 2.7°C + 0.1°C cooling, respectively, larger than the 1.2°C + 1.1°C
and 1.4°C + 0.7°C suggested by MARGO. With the addition of the new central Pacific data, our Mg/Ca
compilation also shows more uniform cooling, without the large meridional gradients suggested by MAR-
GO, but in good agreement with model results. It should be noted that our estimates, while systematically
cooler than MARGO, do fall within their estimate of total error which accounts for proxy spread among a
number of other factors. Our compilation is also broadly consistent with LGM alkenone compilations (e.g.,
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Figure 3. (a) Magnitude of mean LGM SST change (LGM-modern) from tropical (15°N to 15°S) G. ruber Mg/Ca
studies (references in Table S5). Markers indicate core locations. Negative values indicate cooling relative to the Late
Holocene (filled symbols), or modern climatological SSTs where Late Holocene data are not available (open symbols).
Base map is mean annual SST (Schmidtko et al., 2013). (b) Base map is the same as (a), with the mean tropical LGM-
modern cooling (—2.6°C) subtracted in order to better allow for the visual assessment of any systematic changes in the
spatial gradients from the modern (base map) to the LGM (markers). Marker color denotes the absolute SST during the
LGM based on G. ruber Mg/Ca. LGM, last glacial maximum; SST, sea surface temperature.

Rosell-Melé et al., 2004), although the magnitude of LGM cooling is sensitive to the choice of calibration
(Tierney & Tingley, 2017) and may be affected by different seasonal influences than Mg/Ca (e.g., Timmer-
mann et al., 2014). Our compilation gives a smaller LGM tropical cooling than a recent data assimilation
study which shows 3.4°C of cooling in the 15°S-15°N latitude band (Tierney et al., 2020). However, the
authors of this study note that the spatial average tropical SST change based on the geochemical proxy data
alone is 0.9°C smaller than the change based on the data assimilation product, implying that the proxy data
average change would be very similar to what we find in our compilation. They attribute this difference
to enhanced cooling throughout the central and eastern tropical Pacific in their assimilated field, cooling
which is not corroborated by the new central tropical Pacific Mg/Ca data presented here. The magnitude of
glacial cooling estimated here based on G. ruber Mg/Ca is in line with model estimates (Brady et al., 2013;
DiNezio et al., 2011; Otto-Bliesner et al., 2009), and provides support for the idea that CLIMAP data from
the central Pacific may not be reliable, as has been previously suggested (Crowley, 2000; Mix et al., 1999).

It has been suggested that tropical Pacific SST change during the LGM (Lea, 2004) and overall tropical tem-
perature change (Hargreaves et al., 2012) provide a constraint on equilibrium climate sensitivity. Studies
using MARGO tropical SSTs (1.7°C + 1.0°C mean LGM cooling) have estimated equilibrium climate sen-
sitivity at 1.0°C-3.6°C (Waelbroeck et al., 2009) and 1.2°C-2.4°C (Annan & Hargreaves, 2013) (95% confi-
dence intervals). Alternatively, a model-data analysis that assumed MARGO SST change was underestimat-
ed by 1°C found a climate sensitivity of 1.6°C-4.5°C (95% confidence interval), consistent with estimates
from models run with LGM boundary conditions (e.g., Brady et al., 2013). Our compilation results, 2.6°C
mean tropical cooling, would also suggest a similar climate sensitivity to what was estimated using 2.8°C
cooling from a single Eastern Pacific Mg/Ca record (Lea 2004). The recent multi-proxy data assimilation
study (Tierney et al., 2020) found climate sensitivity to be 2.4°C-4.5°C (95% confidence interval)—broadly
consistent with the estimate from Schmidt et al. (2014) but with a higher lower bound.
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4. Conclusions

We have produced the first planktonic foraminiferal Mg/Ca data for the glacial central equatorial Pacific,
which show, on average ~2.0°C cooling, in line with model estimates but disagreeing with the CLIMAP and
MARGO compilations. These data, together with existing Mg/Ca temperature estimates from the global
tropics suggest a tropical cooling of ~2.6°C, implying that MARGO-based Equilibrium Climate Sensitivity
estimates may be underestimated. Our new central Pacific data underscores the importance of continued
work on both proxy development and the value of developing radiocarbon dated and geochemically based
SST records from the open ocean. While the open ocean temperature estimates originating from the faunal
counts of the CLIMAP program over 40 years ago were revolutionary for their time, these data alone are
insufficient for constraining today’s state-of-the-art climate models.

Data Availability Statement

All radiocarbon, Mg/Ca and oxygen isotope data presented in this study are included in the Supporting In-
formation and are archived at the National Oceanic and Atmospheric Administration National Centers for
Environmental Information database (https://www.ncdc.noaa.gov/paleo/study/29252).
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