208 research outputs found

    Unusual behaviour of the ferroelectric polarization in PbTiO3_{3}/SrTiO3_{3} superlattices

    Get PDF
    Artificial PbTiO3_{3}/SrTiO3_{3} superlattices were constructed using off-axis RF magnetron sputtering. X-ray diffraction and piezoelectric atomic force microscopy were used to study the evolution of the ferroelectric polarization as the ratio of PbTiO3_{3} to SrTiO3_{3} was changed. For PbTiO3_{3} layer thicknesses larger than the 3-unit cells SrTiO3_{3} thickness used in the structure, the polarization is found to be reduced as the PbTiO3_{3} thickness is decreased. This observation confirms the primary role of the depolarization field in the polarization reduction in thin films. For the samples with ratios of PbTiO3_{3} to SrTiO3_{3} of less than one a surprising recovery of ferroelectricity that cannot be explained by electrostatic considerations was observed

    Ferroelectric Dead Layer Driven by a Polar Interface

    Get PDF
    Based on first-principles and model calculations we investigate the effect of polar interfaces on the ferroelectric stability of thin-film ferroelectrics. As a representative model, we consider a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces that serve as doping layers. We find that the polar interfaces create an intrinsic electric field that is screened by the electron charge leaking into the BaTiO3 layer. The amount of the leaking charge is controlled by the boundary conditions which are different for three heterostructures considered, namely Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and SrRuO3/LaO/BaTiO3/LaO. The intrinsic electric field forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. Our first-principles and model calculations demonstrate that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric field that penetrates deeper into the ferroelectric. The predicted mechanism for a ferroelectric dead layer at the interface controls the critical thickness for ferroelectricity in systems with polar interfaces.Comment: 33 Pages, 5 figure

    Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    Get PDF
    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity

    Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films

    Full text link
    X-ray photoelectron diffraction is used to directly probe the intra-cell polar atomic distortion and tetragonality associated with ferroelectricity in ultrathin epitaxial PbTiO3 films. Our measurements, combined with ab-initio calculations, unambiguously demonstrate non-centro-symmetry in films a few unit cells thick, imply that films as thin as 3 unit cells still preserve a ferroelectric polar distortion, and also show that there is no thick paraelectric dead layer at the surface

    X-ray photoelectron diffraction study of ultrathin PbTiO3 films

    Get PDF
    Abstract.: Full hemispherical X-ray photoelectron diffraction (XPD) experiments have been performed to investigate at the atomic level ultrathin epitaxial c-axis oriented PbTiO3 (PTO) films grown on Nb-doped SrTiO3 substrates. Comparison between experiment and theory allows us to identify a preferential ferroelectric polarization state in a 60 Å -thick PTO film. Multiple scattering theory based on a cluster-model [ Phys. Rev. B 63\textbf{63} , 075404 (2001)] is used to simulate the experiment

    Strain-Engineering Mott-Insulating La2_2CuO4_4

    Get PDF
    The transition temperature TcT_\textrm{c} of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2x_{2-\mathrm{x}}Srx_\mathrm{x}CuO4_4 thin films, such substrates are sub-optimal and the highest TcT_\textrm{c} is instead obtained using LaSrAlO4_4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in TcT_\mathrm{c} and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2_2CuO4_4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest TcT_\textrm{c} under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.Comment: 15 pages, 7 figures and 2 tables (including Supplementary Information
    corecore