86 research outputs found

    Four wave mixing oscillation in a semiconductor microcavity: Generation of two correlated polariton populations

    Full text link
    We demonstrate a novel kind of polariton four wave mixing oscillation. Two pump polaritons scatter towards final states that emit two beams of equal intensity, separated both spatially and in polarization with respect to the pumps. The measurement of the intensity fluctuations of the emitted light demonstrates that the final states are strongly correlated.Comment: 5 pages, 5 figures In this strongly revised version several new experimental data are adde

    The supergiant fast X-ray transients XTE J1739-302 and IGR J08408-4503 in quiescence with XMM-Newton

    Full text link
    Context. Supergiant fast X-ray transients are a subclass of high mass X-ray binaries that host a neutron star accreting mass from the wind of its OB supergiant companion. They are characterized by an extremely pronounced and rapid variability in X-rays, which still lacks an unambiguous interpretation. A number of deep pointed observations with XMM-Newton have been carried out to study the quiescent emission of these sources and gain insight into the mechanism that causes their X-ray variability. Aims. We continued this study by using three XMM-Newton observations of the two supergiant fast X-ray transient prototypes XTEJ1739-302 and IGR J08408-4503 in quiescence. Methods. An in-depth timing and spectral analysis of these data have been carried out. Results. We found that the quiescent emission of these sources is characterized by both complex timing and spectral variability, with multiple small flares occurring sporadically after periods of lower X-ray emission. Some evidence is found in the XMM-Newton spectra of a soft component below ~2 keV, similar to that observed in the two supergiant fast X-ray transients AXJ1845.0-0433 and IGRJ16207-5129 and in many other high mass X-ray binaries. Conclusions.We suggest some possible interpretations of the timing and spectral properties of the quiescent emission of XTEJ1739- 302 and IGR J08408-4503 in the context of the different theoretical models proposed to interpret the behavior of the supergiant fast X-ray transients.Comment: 13 pages, 14 figures. Accepted for publication in A&A. V2: Corrected few typo

    Is unicompartmental-to-unicompartmental revision knee arthroplasty a reliable option? Case-control study

    Get PDF
    AbstractBackgroundIn selected patients with failed unicompartmental knee arthroplasty (UKA), revision UKA is a reliable option and may even provide lower morbidity rates and better functional outcomes compared to revision total knee arthroplasty.Material and methodsIn a multicentre retrospective study of 425 knees requiring revision surgery after UKA, 36 knees were managed with revision UKA.ResultsOf the 36 knees, 3 (8.33%) required iterative revision surgery, for aseptic loosening. After a mean follow-up of 8.3 years, the mean IKS knee and function scores were high (93.81/100 and 90.77/100, respectively).DiscussionIn carefully selected patients, UKA-to-UKA revision performed according to a rigorous operative technique deserves a role in the surgical strategy for failed UKA.Level of evidenceIII, multicentre retrospective case-control study

    INTEGRAL detection of hard X-rays from NGC 6334: Nonthermal emission from colliding winds or an AGN?

    Get PDF
    We report the detection of hard X-ray emission from the field of the star-forming region NGC 6334 with the the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The JEM-X monitor and ISGRI imager aboard INTEGRAL and Chandra ACIS imager were used to construct 3-80 keV images and spectra of NGC 6334. The 3-10 keV and 10-35 keV images made with JEM-X show a complex structure of extended emission from NGC 6334. The ISGRI source detected in the energy ranges 20-40 keV and 40-80 keV coincides with the NGC 6334 ridge. The 20-60 keV flux from the source is (1.8+-0.37)*10(-11) erg cm(-2) s(-1). Spectral analysis of the source revealed a hard power-law component with a photon index about 1. The observed X-ray fluxes are in agreement with extrapolations of X-ray imaging observations of NGC 6334 by Chandra ACIS and ASCA GIS. The X-ray data are consistent with two very different physical models. A probable scenario is emission from a heavily absorbed, compact and hard Chandra source that is associated with the AGN candidate radio source NGC 6334B. Another possible model is the extended Chandra source of nonthermal emission from NGC 6334 that can also account for the hard X-ray emission observed by INTEGRAL. The origin of the emission in this scenario is due to electron acceleration in energetic outflows from massive early type stars. The possibility of emission from a young supernova remnant, as suggested by earlier infrared observations of NGC 6334, is constrained by the non-detection of 44Ti lines.Comment: 8 pages, 8 figures, Astronomy and Astrophysics (in press

    Hard X-ray flares in IGR J08408-4503 unveil clumpy stellar winds

    Full text link
    Context : A 1000-s flare from a new hard X-ray transient, IGR J08408-4503, was observed by INTEGRAL on May 15, 2006 during the real-time routine monitoring of IBIS/ISGRI images performed at the INTEGRAL Science Data Centre. The flare, detected during a single one-hour long pointing, peaked at 250 mCrab in the 20-40 keV energy range. Aims : Multi-wavelength observations, combining high-energy and optical data, were used to unveil the nature of IGR J08408-4503. Methods : A search in all INTEGRAL public data for other bursts from IGR J08408-4503 was performed, and the detailed analysis of another major flare is presented. The results of two Swift Target of Opportunity observations are also described. Finally, a study of the likely optical counterpart, HD 74194, is provided. Results : IGR J08408-4503 is very likely a supergiant fast X-ray transient (SFXT) system. The system parameters indicate that the X-ray flares are probably related to the accretion of wind clumps on a compact object orbiting about 1E13 cm from the supergiant HD 74194. The clump mass loss rate is of the order of 1E-6 solar mass/yr. Conclusions : Hard X-ray flares from SFXTs allow to probe the stellar winds of massive stars, and could possibly be associated with wind perturbations due to line-driven instabilities.Comment: 5 pages with 5 figures. Published as a Letter in Astronomy & Astrophysic

    IGRJ16479-4514: the first eclipsing supergiant fast X-ray transient?

    Full text link
    Supergiant fast X-ray transients are a new class of high mass X-ray binaries recently discovered with INTEGRAL. Hours long outbursts from these sources have been observed on numerous occasions at luminosities of ~1E36-1E37 erg/s, whereas their low level activity at ~1E32-1E34 erg/s has not been deeply investigated yet due to the paucity of long pointed observations with high sensitivity X-ray telescopes. Here we report on the first long (~32 ks) pointed XMM-Newton observation of IGR J16479-4514, a member of this new class. This observation was carried out in March 2008, shortly after an outburst from this source, with the main goal of investigating its low level emission and physical mechanisms that drive the source activity. Results from the timing, spectral and spatial analysis of the EPIC-PN XMM-Newton observation show that the X-ray source IGRJ16479-4514 underwent an episode of sudden obscuration, possibly an X-ray eclipse by the supergiant companion. We also found evidence for a soft X-ray extended halo around the source that is most readily interpreted as due to scattering by dust along the line of sight to IGRJ16479-4514. We discuss this result in the context of the gated accretion scenarios that have been proposed to interpret the behaviour of supergiant fast X-ray transient.Comment: Accepted for publication in MNRAS letter. 6 pages and 5 figures. We updated one reference and the acknowledgment

    Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT

    Get PDF
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    X-ray variation statistics and wind clumping in Vela X-1

    Full text link
    We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 seconds, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N_H. Accreted clump masses derived from the INTEGRAL data are on the order of 5 x 10^19 -10^21 g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened.Comment: 8 pages, 6 figures, accepted for publication in A&

    Gamma-ray follow-up studies on Eta Carinae

    Full text link
    Observations of high energy gamma rays recently revealed a persistent source in spatial coincidence with the binary system Eta Carinae. Since modulation of the observed gamma-ray flux on orbital time scales has not been reported so far, an unambiguous identification was hitherto not possible. Particularly the observations made by the Fermi Large Area Telescope (LAT) posed additional questions regarding the actual emission scenario owing to the existence of two energetically distinct components in the gamma-ray spectrum of this source, best described by an exponentially cutoff power-law function (CPL) at energies below 10 GeV and a power-law (PL) component dominant at higher energies. The increased exposure in conjunction with the improved instrumental response functions of the LAT now allow us to perform a more detailed investigation of location, spectral shape, and flux time history of the observed gamma-ray emission. For the first time, we are able to report a weak but regular flux decrease over time. This can be understood and interpreted in a colliding-wind binary scenario for orbital modulation of the gamma-ray emission. We find the spectral shape of the gamma-ray signal in agreement with a single emitting particle population in combination with significant absorption by gamma-gamma pair production. Studying the correlation of the flux decrease with the orbital separation of the binary components allows us to predict the behaviour up to the next periastron passage in 2014.Comment: 11 pages, 9 figure
    corecore