73 research outputs found
Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain
Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities
a review and some new issues on the theory of the h v technique for ambient vibrations
In spite of the Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) technique obtained by the ambient vibrations is a very popular tool, a full theoretical explanation of it has been not reached yet. A short excursus is here presented on the theoretical models explaining the H/V spectral ratio that have been development in last decades. It leads to the present two main research lines: one aims at describing the H/V curve by taking in account the whole ambient-vibration wavefield, and another just studies the Rayleigh ellipticity. For the first theoretical branch, a comparison between the most recent two models of the ambient-vibration wavefield is presented, which are the Distributed Surface Sources (DSS) one and the Diffuse Field Approach (DFA). A mention is done of the current developments of these models and of the use of the DSS for comparing the H/V spectral ratio definitions present in literature. For the second research branch, some insights about the connection between the so-called osculation points of the Rayleigh dispersion curves and the behaviour of the H/V curve are discussed
On the Origin of the Functional Architecture of the Cortex
The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex
Fidelity in the translation of polyuridylic acid in the l1210 mouse ascites leukemia subcellular system. Abstr.
<scp>A technique for the analysis of transient seismic signals</scp>
Abstract
An analytical method, called the “multiple filter technique,” is shown to be a fast and efficient means of studying multi-mode dispersed signals. Amplitudes and phases, as functions of period and velocity, are determined from the output of a set of narrow-band digital filters. The group velocities and other dispersion parameters determined by this technique are concordant with theoretical values when the method is tested with synthetic seismograms. It can recover broader portions of the dispersion present in ordinary seismic recordings compared to the classical peak and trough method. A simple diagnostic diagram is introduced in order to study the time and frequency resolution permitted by this analytic technique.</jats:p
Images perceived after chromatic or achromatic contrast sensitivity losses
We simulate how subjects with losses in chromatic and achromatic contrast sensitivity perceive colored images by using the spatiochromatic corresponding pair algorithm. This is a generalized version of the algorithm by Capilla et al. (J Opt Soc Am (A) 2004;21:176–186) for simulating color perception of color deviant subjects, which incorporates a simple spatial vision model, consisting of a linear filtering stage, with a band-pass achromatic filter and two low-pass chromatic ones, for the red-green and blue-yellow mechanisms. These filters, except for the global scaling, are the subject’s contrast sensitivity functions measured along the cardinal directions of the color space. In its present form, the algorithm would serve to simulate alterations both in the spectral sensitivities and in the contrast sensitivities of the visual mechanisms. After a preliminary theoretical study on the effect of frequency selective and overall reductions in the contrast sensitivity function of a single mechanism, we present cases of real subjects with glaucoma and diabetes, suffering alterations of different magnitude in the three mechanisms
SPECTRUM, PHASE AND GROUP VELOCITIES OF THE THEORETICAL SEISMOGRAMS AND THE IDEA OF THE EQUIVALENT SURFACE SOURCE OF DISTURBANCE
Electromagnetic seismograph constants by least-squares inversion
abstract
A least-squares method has been developed to determine the free periods and damping constants of an electromagnetic seismograph from its calibration pulse. The resulting values are correct to within a few tenths of one per cent for synthetic calibration pulses, even when moderate levels of microseismic noise are present.
The seismograph constants of the long-period vertical component at Dallas, Texas were determined from in situ measurements and compared with those calculated from the calibration pulse. The results agreed to within four per cent or better for the free periods and damping constants, after correcting for the linear trend and the base coordinate system of the observed pulse. The values differed by as much as 30 per cent when the linear trend and base coordinate corrections were ignored.
Two sets of instrumental constants from an unmatched pair of horizontal seismographs were determined from their calibration pulses. Directions of particle motion for a Love wave train recorded on the same instruments were computed before and after instrumental corrections; the results differed by as much as 8 degrees.</jats:p
- …
