292 research outputs found

    Scalar Top Quark as the Next-to-Lightest Supersymmetric Particle

    Get PDF
    We study phenomenologically the scenario in which the scalar top quark is lighter than any other standard supersymmetric partner and also lighter than the top quark, so that it decays to the gravitino via stop -> W^+ b G. In this case, scalar top quark events would seem to be very difficult to separate from top quark pair production. However, we show that, even at a hadron collider, it is possible to distinguish these two reactions. We show also that the longitudinal polarization of the final W+W^+ gives insight into the scalar top and wino/Higgsino mixing parameters.Comment: 18 pages, LaTeX, 7 figures, minor typographical correction

    Low mass lepton pair production in hadron collisions

    Get PDF
    The hadroproduction of lepton pairs with mass QQ and transverse momentum QTQ_T can be described in perturbative QCD by the same partonic subprocesses as prompt photon production. We demonstrate that, like prompt photon production, lepton pair production is dominated by quark-gluon scattering in the region QT>Q/2Q_T>Q/2. This leads to sensitivity to the gluon density in kinematical regimes that are accessible both at collider and fixed target experiments while eliminating the theoretical and experimental uncertainties present in prompt photon production.Comment: Talk given by M. Klasen at the International Conference on the Structure and Interactions of the Photon, PHOTON 99, Freiburg i. Brsg., Germany, May 23-27, 1999. To be published in the proceedings. 6 pages, 6 postscript figure

    Z boson transverse momentum spectrum from the lepton angular distributions

    Get PDF
    In view of recent discussions concerning the possibly limiting energy resolution systematics on the measurement of the Z boson transverse momentum distribution at hadron colliders, we propose a novel measurement method based on the angular distributions of the decay leptons. We also introduce a phenomenological parametrization of the transverse momentum distribution that adapts well to all currently available predictions, a useful tool to quantify their differences.Comment: 12 pages, 6 figure

    Lem2p (LEM2) and Cmp7p (CHMP7) function in ESCRT-dependent nuclear envelope remodeling in fission yeast

    Get PDF
    ESCRT‐III proteins have been implicated in sealing the nuclear envelope in mammals, both during nuclear assembly and following mechanical disruption. This sealing process requires the ESCRT‐II/ESCRT‐ III hybrid protein CHMP7 and the AAA ATPase VPS4. It remains unclear, however, how CHMP7 is recruited to breaches of the nuclear envelope. The fission yeast S. pombe is an attractive genetic model system for investigating this role of the ESCRT pathway because, in fission yeast, the nuclear envelope develops fenestrations that must be closed twice per cell cycle: upon mitotic entry when duplicated spindle pole bodies (SPB) are incorporated into the nuclear envelope and after a successful cell cycle when the SPBs are ejected back to cytoplasm. Here we report that deletion of fission yeast vps4 leads to severe defects in nuclear morphology and integrity, which causes delayed segregation of duplicated SPBs, asymmetric nuclear bipartition in mitosis, and slow growth. Interestingly, these phenotypes are spontaneously suppressed by loss‐of‐function mutations that arise in cmp7 (pombe CHMP7) or lem2, a member of the LEM (Lap2‐Emerin‐Man1) family of inner nuclear membrane proteins—implying that all three function in the same pathway. Based on these observations, we hypothesize that Lem2p acts as a nuclear site‐specific adaptor to recruit Cmp7p to the nuclear envelope

    Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production

    Get PDF
    We revise the bb_* model for the Collins-Soper-Sterman resummed form factor to improve description of the leading-power contribution at nearly nonperturbative impact parameters. This revision leads to excellent agreement of the transverse momentum resummation with the data in a global analysis of Drell-Yan lepton pair and Z boson production. The nonperturbative contributions are found to follow universal quasi-linear dependence on the logarithm of the heavy boson invariant mass, which closely agrees with an estimate from the infrared renormalon analysis.Comment: published version; 14 pages, 4 figures, additional discussio

    A Novel Technique for Studying the Z Boson Transverse Momentum Distribution at Hadron Colliders

    Full text link
    We present a novel method for studying the shape of the Z boson transverse momentum distribution, Q_T, at hadron colliders in ppbar/pp -> Z/gamma* -> l^+l^-. The Q_T is decomposed into two orthogonal components; one transverse and the other parallel to the di-lepton thrust axis. We show that the transverse component is almost insensitive to the momentum resolution of the individual leptons and is thus more precisely determined on an event-by-event basis than the Q_T. Furthermore, we demonstrate that a measurement of the distribution of this transverse component is substantially less sensitive to the dominant experimental systematics (resolution unfolding and Q_T dependence of event selection efficiencies) reported in previous measurements of the Q_T distribution.Comment: 13 pages, 12 figure

    Polarization and Resummation in Slepton Production at Hadron Colliders

    Get PDF
    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum (q_T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q_T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.Comment: Contribution to Loops and Legs 2006, 5 pages, 4 figure

    Angular Correlations in Top Quark Pair Production and Decay at Hadron Colliders

    Get PDF
    We show how to observe sizable angular correlations between the decay products of the top quark and those of the anti-top quark in top quark pair production and decay at hadron colliders. These correlations result from the large asymmetry in the rate for producing like-spin versus unlike-spin top quark pairs provided the appropriate spin axes are used. The effects of new physics at production or decay on these correlations are briefly discussed.Comment: 34 pages, revtex, including 12 uuencoded postscript figure

    Electron Tomography of HIV-1 Infection in Gut-Associated Lymphoid Tissue

    Get PDF
    Critical aspects of HIV-1 infection occur in mucosal tissues, particularly in the gut, which contains large numbers of HIV-1 target cells that are depleted early in infection. We used electron tomography (ET) to image HIV-1 in gut-associated lymphoid tissue (GALT) of HIV-1–infected humanized mice, the first three-dimensional ultrastructural examination of HIV-1 infection in vivo. Human immune cells were successfully engrafted in the mice, and following infection with HIV-1, human T cells were reduced in GALT. Virions were found by ET at all stages of egress, including budding immature virions and free mature and immature viruses. Immuno-electron microscopy verified the virions were HIV-1 and showed CD4 sequestration in the endoplasmic reticulum of infected cells. Observation of HIV-1 in infected GALT tissue revealed that most HIV-1–infected cells, identified by immunolabeling and/or the presence of budding virions, were localized to intestinal crypts with pools of free virions concentrated in spaces between cells. Fewer infected cells were found in mucosal regions and the lamina propria. The preservation quality of reconstructed tissue volumes allowed details of budding virions, including structures interpreted as host-encoded scission machinery, to be resolved. Although HIV-1 virions released from infected cultured cells have been described as exclusively mature, we found pools of both immature and mature free virions within infected tissue. The pools could be classified as containing either mostly mature or mostly immature particles, and analyses of their proximities to the cell of origin supported a model of semi-synchronous waves of virion release. In addition to HIV-1 transmission by pools of free virus, we found evidence of transmission via virological synapses. Three-dimensional EM imaging of an active infection within tissue revealed important differences between cultured cell and tissue infection models and furthered the ultrastructural understanding of HIV-1 transmission within lymphoid tissue

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening
    corecore