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Abstract

We revise theb∗ model for the Collins–Soper–Sterman resummed form factor to improve description of the leading-power contrib
nearly nonperturbative impact parameters. This revision leads to excellent agreement of the transverse momentum resummation with
a global analysis of Drell–Yan lepton pair andZ boson production. The nonperturbative contributions are found to follow universal quasi-
dependence on the logarithm of the heavy boson invariant mass, which closely agrees with an estimate from the infrared renormalon a
 2006 Elsevier B.V.Open access under CC BY license.
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Transverse momentum distributions of heavy Drell–Yan l
ton pairs,W , orZ bosons produced in hadron–hadron collisio
present an interesting example of factorization for multi-sc
observables. If the transverse momentumqT of the electroweak
boson is much smaller than its invariant massQ, dσ/dqT at an
nth order of perturbation theory includes large contributions
the typeαn

s lnm(q2
T /Q2)/q2

T (m = 0,1, . . . ,2n−1), which must
be summed through all orders ofαs to reliably predict the cros
section[1]. The feasibility of all-order resummation is prove
by a factorization theorem, first formulated fore+e− hadropro-
duction[2,3], stated by Collins, Soper, and Sterman (CSS)
the Drell–Yan process[4], and recently proved by detailed in
vestigation of gauge transformations ofkT -dependent parto
densities[5,6].

The heavy bosons acquire non-zeroqT mostly by recoil-
ing against QCD radiation. The CSS formalism accounts
both the short- and long-wavelength QCD radiation by me
of a Fourier–Bessel transform of a resummed form factorW̃ (b)

introduced in impact parameter (b) space. The perturbative co
tribution, characterized byb � 0.5 GeV−1, dominates inW
and Z boson production at all values ofqT . The nonpertur-
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bative contribution fromb � 0.5 GeV−1 is not negligible at
qT < 20 GeV in the precision measurements of theW boson
massMW at the Tevatron and LHC[7]. The model for the non
perturbative recoil is the major source of theoretical uncerta
in the extraction ofMW from the experimental data. This unce
tainty must be reduced in order to measureMW with accuracy
of about 30 MeV in the Tevatron Run-2 and 15 MeV at
LHC. The nonperturbative model presented below approa
the level of accuracy desired in these measurements.

The nonperturbative component [described by the func
FNP(b,Q) given in Eq.(4)] can be constrained in a few e
periments by exploiting process-independence, or univers
of FNP(b,Q), just as the universalkT -integrated parton dens
ties are constrained with the help of inclusive scattering d
The universality ofFNP(b,Q) in unpolarized Drell–Yan-like
processes and semi-inclusive deep-inelastic scattering (SI
follows from the CSS factorization theorem[5]. In the study
presented here, we carefully investigate agreement of the
versality assumption with the data in a global analysis of fix
target Drell–Yan pair and TevatronZ boson production. We
revise the nonperturbative model used in the previous stu
[8,9] and improve agreement with the data without introduc
additional free parameters. Renormalization-group invaria
requiresFNP(b,Q) to depend linearly on lnQ [3,4]. With our
latest revisions put in place, the globalqT fit clearly prefers
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a simple functionFNP(b,Q) with universal lnQ dependence
The newFNP(b,Q) has reduced dependence on the collis
energy

√
S comparatively to the earlier fits. The slope of t

lnQ dependence found in the new fit agrees numerically w
its estimate made with methods of infrared renormalon ana
[10,11].

The functionFNP(b,Q) primarily parametrizes the “powe
suppressed” terms, i.e., terms proportional to positive powe
b. When assessed in a fit,FNP(b,Q) also contains admixture o
the leading-power terms (logarithmic inb terms), which were
not properly included in the approximate leading-power fu
tion W̃LP(b) [cf. Eq. (4)]. In contrast, estimates ofFNP(b,Q)

made in the infrared renormalon analysis explicitly remove
leading-power contributions fromFNP(b,Q) [11]. While the
recent studies[9–13] point to an approximately Gaussian for
of FNP(b,Q) [FNP(b,Q) ∝ b2], they disagree on the magn
tude ofFNP(b,Q) and itsQ dependence. The source of the
differences can be traced to the varying assumptions abou
form of the leading-power functioñWLP(b) at b < 2 GeV−1,
which is correlated in the fit withFNP(b,Q). The exact be-
havior of W̃ (b) at b > 2 GeV−1 is of reduced importance
as W̃ (b) is strongly suppressed at suchb. The new improve-
ments described here (excellent agreement ofFNP(b,Q) with
the data and renormalon analysis) result from modification
the model forW̃LP(b) at b < 2 GeV−1. The improvements ar
preserved under variations of the large-b form of W̃LP(b) in a
significant range of the model parameters.

Our Letter follows the notations in Ref.[9]. The form factor
W̃ (b) factorizes at allb as[2–4]

(1)W̃ (b) =
∑

j=q,q̄

σ
(0)
j

S
e−S(b,Q)Pj (x1, b)Pj̄ (x2, b),

whereσ
(0)
j /S is a constant prefactor[4], andx1,2 ≡ e±yQ/

√
S

are the Born-level momentum fractions, withy being the ra-
pidity of the vector boson. Theb-dependent parton densitie
Pj (x, b) and Sudakov function

(2)S(b,Q) ≡
Q2∫

b2
0/b2

dµ̄2

µ̄2

[
A

(
αs(µ̄)

)
ln

(
Q2

µ̄2

)
+B

(
αs(µ̄)

)]

are universal in Drell–Yan-like processes and SIDIS[5]. When
the momentum scalesQ andb0/b (whereb0 ≡ 2e−γE ≈ 1.123
is a dimensionless constant) are much larger than 1 GeV,W̃ (b)

reduces to its perturbative part̃Wpert(b), i.e., its leading-powe
(logarithmic inb) part evaluated at a finite order ofαs :

W̃ (b)
∣∣
Q,b0/b�1 GeV

≈ W̃pert(b)

(3)

≡
∑

j=q,q̄

σ
(0)
j

S
e−SP (b,Q)[C ⊗ f ]j (x1, b;µF )[C ⊗ f ]j̄ (x2, b; µF ).

Here SP (b,Q) and [C ⊗ f ]j (x, b;µF ) ≡ ∑
a

∫ 1
x

dξ/ξ ×
Cja(x/ξ,µF b)fa(ξ,µF ) are the finite-order approximations
the leading-power parts ofS(b,Q) and Pj (x, b). fa(x,µF )
is

f

-

l

he

n

is thekT -integrated parton density, computed in our study
using the CTEQ6M parameterization[14]. Cja(x,µF b) is the
Wilson coefficient function. We computeSP (b,Q) up toO(α2

s )

andCja up toO(αs).
In Z boson production, the maximum ofbW̃(b) is lo-

cated atb ≈ 0.25 GeV−1, andW̃pert(b) dominates the Fourier
Bessel integral. In the examined low-Q region, the maximum
of bW̃(b) is located atb ≈ 1 GeV−1, where higher-order cor
rections in powers ofαs andb must be considered. We reorg
nize Eq.(1) to separate the leading-power (LP) term̃WLP(b),
given by the model-dependent continuation ofW̃pert(b) to b �
1 GeV−1, and the nonperturbative exponente−FNP(b,Q), which
absorbs the power-suppressed terms:

(4)W̃ (b) = W̃LP(b)e−FNP(b,Q).

At b → 0, the perturbative approximation for̃W(b) is restored:
W̃LP → W̃pert, FNP → 0. The power-suppressed contributio
are proportional to even powers ofb [10]. Detailed expres
sions for some power-suppressed terms are given in Ref.[11].
At impact parameters of order 1 GeV−1, we keep only the firs
power-suppressed contribution proportional tob2:

(5)

FNP ≈ b2(a1 + a2 ln(Q/Q0) + a3φ(x1) + a3φ(x2)
) + · · · ,

wherea1, a2, anda3 are coefficients of magnitude less th
1 GeV2, and φ(x) is a dimensionless function. The term
a2 ln(Q/Q0) anda3φ(xj ) arise fromS(b,Q) and ln[Pj (xj , b)]
in ln[W̃ (b)], respectively. We neglect the flavor depende
of φ(x) in the analyzed region dominated by scattering
light u and d quarks.FNP is consequently a universal fun
tion within this region. The dependence ofFNP on lnQ follows
from renormalization-group invariance of the soft-gluon rad
tion [3]. The coefficienta2 of the lnQ term has been related
the vacuum average of the Wilson loop operator and estim
within lattice QCD as 0.19+0.12

−0.09 GeV2 [11].
The preferredFNP is correlated in the fit with the as

sumed large-b behavior ofW̃LP. We examine this correlatio
in a modified version of theb∗ model [3,4]. The shape o
W̃LP is varied in theb∗ model by adjusting a single par
meterbmax. Continuity of W̃ and its derivatives, needed fo
the numerical stability of the Fourier transform, is alwa
preserved. We setW̃LP(b) ≡ W̃pert(b∗), with b∗(b, bmax) ≡
b(1 + b2/b2

max)
−1/2. W̃LP(b) reduces toW̃pert(b) as b → 0

and asymptotically approaches̃Wpert(bmax) asb → ∞. Theb∗
model with a relatively lowbmax = 0.5 GeV−1 was a choice
of the previousqT fits [8,9]. However, it is natural to con
sider bmax above 1 GeV−1 in order to avoid ad hoc modifi
cations ofW̃pert(b) in the region where perturbation theory
still applicable. To implement̃Wpert(b∗) for bmax > 1 GeV−1,
we must choose the factorization scaleµF such that it stays
at anyb andbmax, above the initial scaleQini = 1.3 GeV of
the DGLAP evolution for the CTEQ6 PDF’sfa(x,µF ). We
keep the usual choiceµF = C3/b∗(b, bmax), whereC3 ∼ b0, for
bmax � b0/Qini ≈ 0.86 GeV−1. Such choice is not acceptab
at bmax > b0/Qini , as it would allowµF < Qini . Instead, we
chooseµF = C3/b∗(b, b0/Qini) for bmax > b0/Qini , i.e., we
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substituteb0/Qini for bmax in µF to satisfyµF � Qini at anyb.
Aside fromfa(x,µF ), all terms inW̃pert(b) are known, at leas
formally, as explicit functions ofαs(1/b) at all b < 1/ΛQCD.
We show in Ref.[15] that this prescription preserves correct
summation of the large logarithms and is numerically stable
to bmax∼ 3 GeV−1.

We perform a series of fits for several choices ofbmax by
closely following the previous globalqT analysis[9]. We con-
sider a total of 98 data points from production of Drell–Y
pairs in E288, E605, and R209 fixed-target experiments
well as from observation ofZ bosons withqT < 10 GeV by
CDF and DØ detectors in the Tevatron Run-1. See Ref.[9] for
the experimental references. Overall normalizations for the
perimental cross sections are varied as free parameters
best-fit normalizations agree with the published values wi
the systematical errors provided by the experiments, with

Fig. 1. The best-fit values ofa(Q) obtained in independent scans ofχ2 for the
contributing experiments. The vertical error bars correspond to the increa
χ2 by unity above its minimum in eachQ bin. The slope of the line is equal t
the central-value prediction from the renormalon analysis[11].
p

s

-
ur

e
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exception of the CDF Run-1 normalization (rescaled down
7%).

To test the universality ofFNP, we individually examine
each bin ofQ. We chooseFNP = a(Q)b2 and independently
fit it to each of the 5 experimental data sets to determine
most plausible normalization in each experiment. We then
the normalizations equal to their best-fit values and exam
χ2 at eachQ as a function ofa(Q). Forbmax = 1− 2 GeV−1,
the best-fit values ofa(Q) follow a nearly linear dependenc
on lnQ [cf. Fig. 1]. The slopea2 ≡ da(Q)/d(lnQ) is close
to the renormalon analysis expectation of 0.19 GeV2 [11]. The
agreement with the universal linear lnQ dependence worsens
bmax is chosen outside the region 1–2 GeV−1. Since the best-fi
a(Q) are found independently in eachQ bin, we conclude tha
the data support the universality ofFNP, whenbmax lies in the
range 1–2 GeV−1. In another test, we find that each experim
tal data set individually prefers a nearly quadratic depende
onb, FNP = a(Q)b2−β , with |β| < 0.5 in all five experiments.

To further explore the issue, we simultaneously fit o
model to all the data. We parametrizea(Q) as a(Q) ≡ a1 +
a2ln[Q/(3.2 GeV)] + a3 ln[100x1x2]. This parametrization co
incides with the BLNY form[9], if the parameters are re
named as{g1, g2, g1g3}(BLNY) → {a1, a2, a3}(here). It agrees
with the generic form ofFNP(b,Q) in Eq. (5), if one iden-
tifies φ(x) = ln(x/0.1). We carry out two sequences of fi
for C3 = b0 and C3 = 2b0 to investigate the stability of ou
prescription forµF and sensitivity toO(α2

s ) corrections. The
dependence onC3 is relatively uniform across the whole ran
of bmax, indicating that our choice ofµF for bmax > b0/Qini is
numerically stable.

Fig. 2 shows the dependence of the best-fitχ2, a1, a2, and
a3 on bmax. As bmax is increased above 0.5 GeV−1 assumed in
the BLNY study,χ2 rapidly decreases, becomes relatively
at bmax = 1–2 GeV−1, and grows again atbmax > 2 GeV−1.
ls
Fig. 2. The best-fitχ2 and coefficientsa1, a2, anda3 in FNP(b,Q) for different values ofbmax, C3 = b0 (stars) andC3 = 2b0 (squares). The size of the symbo
approximately corresponds to 1σerrors for the shown parameters.
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Fig. 3. Differences between the measured (data) and theoretical (theory) cross sections, divided by the experimental errorδexp in each(Q,qT ) bin. The values of

χ2 for each experiment in the two fits are listed in the legend in the same order.
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The global minimum ofχ2 = 125(111) is reached atbmax ≈
1.5 GeV−1, where all data sets are described equally w
without major tensions among the five experiments. The
provement inχ2 mainly ensues from better agreement with
low-Q experiments (E288, E605, and R209), while the qu
ity of all fits to theZ data is about the same. This is illustrat
by Fig. 3, which shows the differences between the meas
and theoretical cross sections, divided by the experimenta
rorsδexp, as well as the values ofχ2 in each experiment, in two
representative fits forbmax = 0.5 GeV−1, C3 = b0 (squares)
and bmax = 1.5 GeV−1, C3 = 2b0 (triangles). The data ar
arranged in bins ofQ (shown by gray background stripe
andqT , with both variables increasing from left to right. F
bmax = 1.5 GeV−1, the (data− theory) differences are reduce
on average in the entire low-Q sample, resulting in lowerχ2 in
three low-Q experiments. Two outlier points in the E605 sa
ple (the first point in the secondQ bin and fifth point in the fifth
Q bin) disagree with the other E288 and E605 data in the s
Q andx region and contribute 15–25 units toχ2 at anybmax. If
the two outliers were removed, one would findχ2/d.o.f.≈ 1 at
the global minimum.

The magnitudes ofa1, a2, anda3 are reduced whenbmax in-
creases from 0.5 to 1.5 GeV−1. In the whole range 1� bmax�
2 GeV−1, a2 agrees with the renormalon analysis estimate.
coefficienta3, which parametrizes deviations from the line
lnQ dependence, is considerably smaller (< 0.05) than botha1
anda2 (∼0.2). A reasonable quality of the fit is retained ifa3 is
set to zero by hand:χ2 increases by≈5 in such a fit above its
minimum in the fit with a freea3. In contrast,χ2 increases by
> 200 units ifa3 = g1g3 is set to zero atbmax= 0.5 GeV−1, as
it was noticed in the BLNY study.

The preference for the values ofbmax between 1 and
2 GeV−1 indicates, first, that the data do favor the extens
of the b range whereW̃LP(b) is approximated by the exa
W̃pert(b). In Z boson production, this region extends up
3–4 GeV−1 as a consequence of the strong suppression o
large-b tail by the Sudakov exponent. The fit to theZ data is
,
-

-

d
r-

e

e

e

actually independent ofbmax within the experimental uncertain
ties for bmax > 1 GeV−1. The best-fit form factorsbW̃(b) for
bmax= 0.5 and 1.5 GeV−1 in Z boson production are shown
Fig. 4(a).

In the low-Q Drell–Yan process, continuation ofbW̃pert(b)

far beyondb ≈ 1 GeV−1 raises objections, sincebW̃pert(b) has
a maximum and is unstable with respect to higher-order cor
tions atb ≈ 1.2–1.5 GeV−1. The dubious large contributions
W̃pert(b) in thisb region would deteriorate the quality of the fi
The b∗ prescription withbmax < 2 GeV−1 reduces the impac
of the dubious terms oñW(b): for bmax small enough, the max
imum of W̃pert(b∗) is only reached atb � 1.2 GeV−1, where it
is suppressed bye−FNP(b,Q). The best-fit form factors for th
E605 kinematics, divided by the best-fit normalizations of
E605 dataNfit , are shown inFig. 4(b).

If a very largebmax comparable to 1/ΛQCD is taken,W̃LP(b)

essentially coincides with̃Wpert(b), extrapolated to largeb by
using the known, although not always reliable, dependenc
W̃pert(b) on lnb. Similar, but not identical, extrapolations
W̃pert(b) to largeb are realized in the models[12,13], which
describe theZ data well, in accord with our own findings. I
Z boson production, our best-fita(MZ) = 0.85± 0.10 GeV2

agrees with 0.8 GeV2 found in the extrapolation-based mode
and it is about a third of 2.7 GeV2 predicted by the BLNY para
metrization. Our results support the conjecture in[12] thata3 is
small if the exact form ofW̃pert(b) is maximally preserved. To
describe the low-Q data, the model[12] allowed a large discon
tinuity in the first derivative ofW̃ (b) atb equal to the separatio
parameterbQZ

max= 0.3–0.5 GeV−1, where switching from the
exactW̃pert(b) to its extrapolated form occurs [cf.Fig. 4(b)]. In
the revisedb∗ model, such discontinuity does not happen, a
W̃LP(b) is closer to the exact̃Wpert(b) in a widerb range at low
Q than in the model[12]. The two models differ substantiall
atb ≈ 1 GeV−1, as seen inFig. 4(b).

To summarize, the extrapolation of̃Wpert(b) to b > 1.5
GeV−1 is disfavored by the low-Q data sets, if a purely
Gaussian form ofFNP is assumed. The Gaussian approxim
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t
Fig. 4. The best-fit form factorsbW̃ (b) in (a) Tevatron Run-2Z boson production; (b) E605 experiment. In the E605 case,bW̃ (b) are divided by the best-fi

normalizationsNfit for the E605 data, and the form factor in the Qiu–Zhang parametrization[12] for b
QZ
max= 0.3 GeV−1 is also shown.
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11.
tion is adequate, on the other hand, in theb∗ model withbmax
in the range 1–2 GeV−1. Here variations inbmax are compen-
sated well by adjustments ina1, a2, anda3, and the full form
factor bW̃(b) stays approximately independent ofbmax. The
best-fit parameters inFNP are quoted forbmax = 1.5 GeV−1

as {a1, a2, a3} = {0.201± 0.011, 0.184± 0.018, −0.026±
0.007} GeV2 for C3 = b0, and{0.247± 0.016, 0.158± 0.023,
−0.049± 0.012} GeV2 for C3 = 2b0. In Ref. [15], the exper-
imental errors are propagated into various theory predict
with the help of the Lagrange multiplier and Hessian ma
methods, discussed, e.g., in Ref.[14]. We find that the globa
fit places stricter constraints onFNP at Q = MZ than the
Tevatron Run-1Z data alone. Theoretical uncertainties fro
a variety of sources are harder to quantify, and they ma
substantial in the low-Q Drell–Yan process. In particular,χ2

for the low-Q data improves by 14 units when the scale
rameterC3 in µF is increased fromb0 to 2b0, reducing the
size of the finite-orderW̃pert(b) at low Q. The best-fit nor-
malizationsNfit also vary withC3. The dependence of th
quality of the fit on the arbitrary factorization scaleµF indi-
cates importance ofO(α2

s ) corrections at lowQ, but does not
substantially increase uncertainties at the electroweak scal
deed, theO(α2

s ) corrections and scale dependence are sm
in W andZ production. In addition, the terma2 lnQ, which
arises from the soft factorS(b,Q) and dominatesFNP at
Q = MZ , shows little variation withC3 [cf. Fig. 2(c)]. Con-
sequently, the revisedb∗ model withbmax ≈ 1.5 GeV−1 rein-
forces our confidence in transverse momentum resumm
at electroweak scales by exposing the soft-gluon origin
universality of the dominant nonperturbative terms at colli
energies.
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