559 research outputs found

    A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    Get PDF
    http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..

    Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP

    Get PDF
    Raf-1 phosphorylates and activates MEK-1, a kinase that activates the extracellular signal regulated kinases (ERK). This kinase cascade controls the proliferation and differentiation of different cell types. Here we describe a Raf-1-interacting protein, isolated using a yeast two-hybrid screen. This protein inhibits the phosphorylation and activation of MEK by Raf-1 and is designated RKIP (Raf kinase inhibitor protein). In vitro, RKIP binds to Raf-1, MEK and ERK, but not to Ras. RKIP co-immunoprecipitates with Raf-1 and MEK from cell lysates and colocalizes with Raf-1 when examined by confocal microscopy. RKIP is not a substrate for Raf-1 or MEK, but competitively disrupts the interaction between these kinases. RKIP overexpression interferes with the activation of MEK and ERK, induction of AP-1-dependent reporter genes and transformation elicited by an oncogenically activated Raf-1 kinase. Downregulation of endogenous RKIP by expression of antisense RNA or antibody microinjection induces the activation of MEK-, ERK- and AP-1-dependent transcription. RKIP represents a new class of protein-kinase-inhibitor protein that regulates the activity of the Raf/MEK/ERK modul

    A model checking approach to the parameter estimation of biochemical pathways

    Get PDF
    Model checking has historically been an important tool to verify models of a wide variety of systems. Typically a model has to exhibit certain properties to be classed ‘acceptable’. In this work we use model checking in a new setting; parameter estimation. We characterise the desired behaviour of a model in a temporal logic property and alter the model to make it conform to the property (determined through model checking). We have implemented a computational system called MC2(GA) which pairs a model checker with a genetic algorithm. To drive parameter estimation, the fitness of set of parameters in a model is the inverse of the distance between its actual behaviour and the desired behaviour. The model checker used is the simulation-based Monte Carlo Model Checker for Probabilistic Linear-time Temporal Logic with numerical constraints, MC2(PLTLc). Numerical constraints as well as the overall probability of the behaviour expressed in temporal logic are used to minimise the behavioural distance. We define the theory underlying our parameter estimation approach in both the stochastic and continuous worlds. We apply our approach to biochemical systems and present an illustrative example where we estimate the kinetic rate constants in a continuous model of a signalling pathway

    PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk

    Get PDF
    Although it is appreciated that canonical signal-transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross-talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross-talk mechanisms in the platelet-derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3-kinase (PI3K) and Ras/extracellular signal-regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross-talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K-dependent and -independent modes of Ras/Erk activation

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    VEGF promotes assembly of the p130Cas interactome to drive endothelial chemotactic signalling and angiogenesis

    Get PDF
    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signalling, endothelial polarisation, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement

    Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease

    Get PDF
    Background:Extensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary diagnosis of and to distinguish advanced from indolent disease. <br>Methodology/Principal Findings: In an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia, 25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score <7 versus Gleason score >>7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for advanced disease discriminated between patients with Gleason score 7 and organ-confined (<pT3a) or advanced (≥pT3a) disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase​,prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample size was the major limitation of the study.</br> <br>Conclusions/Significance: Seminal plasma represents a robust source of potential peptide makers for primary PCa diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal biomarker candidates.</br&gt

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    Computational and Mathematical Modelling of the EGF Receptor System

    Get PDF
    This chapter gives an overview of computational and mathematical modelling of the EGF receptor system. It begins with a survey of motivations for producing such models, then describes the main approaches that are taken to carrying out such modelling, viz. differential equations and individual-based modelling. Finally, a number of projects that applying modelling and simulation techniques to various aspects of the EGF receptor system are described
    corecore