4,655 research outputs found

    Gap Anisotropy and de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    We present a theoretical study on the de Haas-van Alphen (dHvA) oscillation in the vortex state of type-II superconductors, with a special focus on the connection between the gap anisotropy and the oscillation damping. Numerical calculations for three different gap structures clearly indicate that the average gap along extremal orbits is relevant for the magnitude of the extra damping, thereby providing a support for experimental efforts to probe gap anisotropy through the dHvA signal. We also derive an analytic formula for the extra damping which gives a good fit to the numerical results.Comment: 5 pages, 1 figure, changes in Introductio

    Theory of Flux-Flow Resistivity near Hc2H_{c2} for s-wave Type-II Superconductors

    Full text link
    This paper presents a microscopic calculation of the flux-flow resistivity ρf\rho_{f} for s-wave type-II superconductors with arbitrary impurity concentrations near the upper critical field Hc2H_{c2}. It is found that, as the mean free path ll becomes longer, ρf\rho_{f} increases gradually from the dirty-limit result of Thompson [Phys. Rev. B{\bf 1}, 327 (1970)] and Takayama and Ebisawa [Prog. Theor. Phys. {\bf 44}, 1450 (1970)]. The limiting behaviors suggest that ρf(H)\rho_{f}(H) at low temperatures may change from convex downward to upward as ll increases, thus deviating substantially from the linear dependence ρfH/Hc2\rho_{f}\propto H/H_{c2} predicted by the Bardeen-Stephen theory [Phys. Rev. {\bf 140}, A1197 (1965)]

    Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle

    Get PDF
    Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have δ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≥875°C. We suggest the δ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites

    Unconventional Vortices and Phase Transitions in Rapidly Rotating Superfluid ^{3}He

    Get PDF
    This paper studies vortex-lattice phases of rapidly rotating superfluid ^3He based on the Ginzburg-Landau free-energy functional. To identify stable phases in the p-Omega plane (p: pressure; Omega: angular velocity), the functional is minimized with the Landau-level expansion method using up to 3000 Landau levels. This system can sustain various exotic vortices by either (i) shifting vortex cores among different components or (ii) filling in cores with components not used in the bulk. In addition, the phase near the upper critical angular velocity Omega_{c2} is neither the A nor B phases, but the polar state with the smallest superfluid density as already shown by Schopohl. Thus, multiple phases are anticipated to exist in the p-Omega plane. Six different phases are found in the present calculation performed over 0.0001 Omega_{c2} <= Omega <= Omega_{c2}, where Omega_{c2} is of order (1- T/T_c) times 10^{7} rad/s. It is shown that the double-core vortex experimentally found in the B phase originates from the conventional hexagonal lattice of the polar state near Omega_{c2} via (i) a phase composed of interpenetrating polar and Scharnberg-Klemm sublattices; (ii) the A-phase mixed-twist lattice with polar cores; (iii) the normal-core lattice found in the isolated-vortex calculation by Ohmi, Tsuneto, and Fujita; and (iv) the A-phase-core vortex discovered in another isolated-vortex calculation by Salomaa and Volovik. It is predicted that the double-core vortex will disappear completely in the experimental p-T phase diagram to be replaced by the A-phase-core vortex for Omega >~ 10^{3} ~ 10^{4} rad/s. C programs to minimize a single-component Ginzburg-Landau functional are available at {http://phys.sci.hokudai.ac.jp/~kita/index-e.html}.Comment: 13 pages, 9 figure

    Experimental and Atomistic Theoretical Study of Degree of Polarization from Multi-layer InAs/GaAs Quantum Dots

    Get PDF
    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. Here we analyse the polarization response of multi-layer quantum dot stacks containing up to nine quantum dot layers by linearly polarized PL measurements and by carrying out a systematic set of multi-million atom simulations. The atomistic modeling and simulations allow us to include correct symmetry properties in the calculations of the optical spectra: a factor critical to explain the experimental evidence. The values of the degree of polarization (DOP) calculated from our model follows the trends of the experimental data. We also present detailed physical insight by examining strain profiles, band edges diagrams and wave function plots. Multi-directional PL measurements and calculations of the DOP reveal a unique property of InAs quantum dot stacks that the TE response is anisotropic in the plane of the stacks. Therefore a single value of the DOP is not sufficient to fully characterize the polarization response. We explain this anisotropy of the TE-modes by orientation of hole wave functions along the [-110] direction. Our results provide a new insight that isotropic polarization response measured in the experimental PL spectra is due to two factors: (i) TM[001]-mode contributions increase due to enhanced intermixing of HH and LH bands, and (ii) TE[110]-mode contributions reduce significantly due to hole wave function alignment along the [-110] direction. We also present optical spectra for various geometry configurations of quantum dot stacks to provide a guide to experimentalists for the design of multi-layer QD stacks for optical devices. Our results predict that the QD stacks with identical layers will exhibit lower values of the DOP than the stacks with non-identical layers.Comment: 10 pages, 7 figures, and 1 tabl

    Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate

    Full text link
    We theoretically study the properties of Nambu-Goldstone bosons in an interacting single-component Bose-Einstein condensate (BEC). We first point out that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf 127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas the first proof deals with the poles of the single-particle Green's function G^\hat{G}, the second one concerns those of the two-particle Green's function. Thus, there may be multiple Nambu-Goldstone bosons even in the single-component BEC with broken U(1) symmetry. The second mode turns out to have an infinite lifetime in the long-wavelength limit in agreement with the conventional viewpoint. In contrast, the first mode from G^\hat{G}, i.e., the Bogoliubov mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating temporally out of and back into the condensate. The substantial lifetime originates from an "improper" structure of the self-energy inherent in the BEC, which has been overlooked so far and will be elucidated here, and removes various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure

    A theory of new type of heavy-electron superconductivity in PrOs_4Sb_12: quadrupolar-fluctuation mediated odd-parity pairings

    Full text link
    It is shown that unconventional nature of superconducting state of PrOs_4Sb_12, a Pr-based heavy electron compound with the filled-Skutterudite structure, can be explained in a unified way by taking into account the structure of the crystalline-electric-field (CEF) level, the shape of the Fermi surface determined by the band structure calculation, and a picture of the quasiparticles in f2^{2}-configuration with magnetically singlet CEF ground state. Possible types of pairing are narrowed down by consulting recent experimental results. In particular, the chiral "p"-wave states such as p_x+ip_y is favoured under the magnetic field due to the orbital Zeeman effect, while the "p"-wave states with two-fold symmetery such as p_x can be stabilized by a feedback effect without the magnetic field. It is also discussed that the double superconducting transition without the magnetic field is possible due to the spin-orbit coupling of the "triplet" Cooper pairs in the chiral state.Comment: 12 pages, 2 figures, submitted to J. Phys.: Condens. Matter Lette

    Spatially resolved electronic structure of an isovalent nitrogen center in GaAs

    Get PDF
    Small numbers of nitrogen dopants dramatically modify the electronic properties of GaAs, generating very large shifts in the conduction-band energies with nonlinear concentration dependence, and impurity-associated spatially-localized resonant states within the conduction band. Cross-sectional scanning tunneling microscopy provides the local electronic structure of single nitrogen dopants at the (110) GaAs surface, yielding highly anisotropic spatial shapes when the empty states are imaged. Measurements of the resonant states relative to the GaAs surface states and their spatial extent allow an unambiguous assignment of specific features to nitrogen atoms at different depths below the cleaved (110) surface. Multiband tight binding calculations around the resonance energy of nitrogen in the conduction band match the imaged features. The spatial anisotropy is attributed to the tetrahedral symmetry of the bulk lattice. Additionally, the voltage dependence of the electronic contrast for two features in the filled state imaging suggest these features could be related to a locally modified surface state
    corecore