96 research outputs found
Interpreting the observed UV continuum slopes of high-redshift galaxies
The observed UV continuum slope of star-forming galaxies is strongly affected by the presence of dust. Its observation is then a potentially valuable diagnostic of dust attenuation, particularly at high redshift where other diagnostics are currently inaccessible. Interpreting the observed UV continuum slope in the context of dust attenuation is often achieved assuming the empirically calibrated Meurer et al. relation. Implicit in this relation is the assumption of an intrinsic UV continuum slope (β = −2.23). However, results from numerical simulations suggest that the intrinsic UV continuum slopes of high-redshift star-forming galaxies are bluer than this, and moreover vary with redshift. Using values of the intrinsic slope predicted by numerical models of galaxy formation combined with a Calzetti et al. reddening law we infer UV attenuations (A1500) 0.35–0.5 mag (AV: 0.14 − 0.2 mag assuming Calzetti et al. reddening law) greater than simply assuming the Meurer relation. This has significant implications for the inferred amount of dust attenuation at very high (z ≈ 7) redshift given current observational constraints on β, combined with the Meurer relation, suggesting dust attenuation to be virtually zero in all but the most luminous systems
Luminosity function of [O ii] emission-line galaxies in the MassiveBlack-II simulation
We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s−1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s−1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from −3 to −2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)−1 at z ≤ 2 while the faint end evolves as ∼3(z + 1)−1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1
CMBR Weak Lensing and HI 21-cm Cross-correlation Angular Power Spectrum
Weak gravitational lensing of the CMBR manifests as a secondary anisotropy in
the temperature maps. The effect, quantified through the shear and convergence
fields imprint the underlying large scale structure (LSS), geometry and
evolution history of the Universe. It is hence perceived to be an important
observational probe of cosmology. De-lensing the CMBR temperature maps is also
crucial for detecting the gravitational wave generated B-modes. Future
observations of redshifted 21-cm radiation from the cosmological neutral
hydrogen (HI) distribution hold the potential of probing the LSS over a large
redshift range. We have investigated the correlation between post-reionization
HI signal and weak lensing convergence field. Assuming that the HI follows the
dark matter distribution, the cross-correlation angular power spectrum at a
multipole \ell is found to be proportional to the cold dark matter power
spectrum evaluated at \ell/r, where r denotes the comoving distance to the
redshift where the HI is located. The amplitude of the ross-correlation depends
on quantities specific to the HI distribution, growth of perturbations and also
the underlying cosmological model. In an ideal ituation, we found that a
statistically significant detection of the cross-correlation signal is
possible. If detected, the cross-correlation signal hold the possibility of a
joint estimation of cosmological parameters and also test various CMBR
de-lensing estimators.Comment: 14 pages, 4 figures, publishe
Confronting predictions of the galaxy stellar mass function with observations at high redshift
We investigate the evolution of the galaxy stellar mass function at high redshift (z ≥ 5) using a pair of large cosmological hydrodynamical simulations: MassiveBlack and MassiveBlack-II. By combining these simulations, we can study the properties of galaxies with stellar masses greater than 108 M⊙ h−1 and (comoving) number densities of log10(ϕ [Mpc−3 dex−1 h3]) > −8. Observational determinations of the galaxy stellar mass function at very high redshift typically assume a relation between the observed ultraviolet (UV) luminosity and stellar mass-to-light ratio which is applied to high-redshift samples in order to estimate stellar masses. This relation can also be measured from the simulations. We do this, finding two significant differences with the usual observational assumption: it evolves strongly with redshift and has a different shape. Using this relation to make a consistent comparison between galaxy stellar mass functions, we find that at z = 6 and above the simulation predictions are in good agreement with observed data over the whole mass range. Without using the correct UV luminosity and stellar mass-to-light ratio, the discrepancy would be up to two orders of magnitude for large galaxies (>1010 M⊙ h−1). At z = 5, however, the stellar mass function for low-mass galaxies (<109 M⊙ h−1) is overpredicted by factors of a few, consistent with the behaviour of the UV luminosity function, and perhaps a sign that feedback in the simulation is not efficient enough for these galaxies
Priprava, in vitro i in vivo evaluacija bioadhezivnih mikrosfera s algino-pektinom: ispitivanje utjecaja polimera pomoću multiple poredbene analize
Ionotropic gelation was used to entrap aceclofenac into algino-pectinate bioadhesive microspheres as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Microspheres were investigated in vitro for possible sustained drug release and their use in vivo as a gastroprotective system for aceclofenac. Polymer concentration and polymer/drug ratio were analyzed for their influence on microsphere properties. The microspheres exhibited good bioadhesive property and showed high drug entrapment efficiency. Drug release profiles exhibited faster release of aceclofenac from alginate microspheres whereas algino-pectinate microspheres showed prolonged release. Dunett\u27s multiple comparison analyis suggested a significant difference in percent inhibition of paw edema when the optimized formulation was compared to pure drug. It was concluded that the algino-pectinate bioadhesive formulations exhibit promising properties of a sustained release form for aceclofenac and that they provide distinct tissue protection in the stomach.U radu je opisana priprava algino-pektinskih bioadhezivnih mikrosfera protuupalnog lijeka aceklofenaka metodom ionotropnog geliranja. In vitro je ispitivana mogućnost postupnog oslobađanja ljekovite tvari iz mikrosfera te mogućnost upotrebe mikrosfera kao gastroprotektivnog sustava za isporuku aceklofenaka in vivo. Ispitivan je utjecaj koncentracije polimera i omjera polimera i lijeka na svojstva mikrosfera. Mikrosfere su bile bioahezivne i sadržavale su veliki udio lijeka. Oslobađanje aceklofenaka iz alginatnih mikrosfera bilo je brže, a iz mikrosfera s algino-pektinom usporeno. Dunnetova multipla analiza ukazuje na značajnu razliku u postotku inhibicije edema šape kada se usporede optimizirana formulacija i čista ljekovita tvar. Može se zaključiti da su bioadhezivne mikrosfere s algino-pektinom povoljne za usporeno oslobađanje aceklofenaka te da pružaju umjerenu zaštitu sluznice želuca
Nuclear matter effects on production in asymmetric Cu+Au collisions at = 200 GeV
We report on production from asymmetric Cu+Au heavy-ion collisions
at =200 GeV at the Relativistic Heavy Ion Collider at both
forward (Cu-going direction) and backward (Au-going direction) rapidities. The
nuclear modification of yields in CuAu collisions in the Au-going
direction is found to be comparable to that in AuAu collisions when plotted
as a function of the number of participating nucleons. In the Cu-going
direction, production shows a stronger suppression. This difference is
comparable in magnitude and has the same sign as the difference expected from
shadowing effects due to stronger low- gluon suppression in the larger Au
nucleus. The relative suppression is opposite to that expected from hot nuclear
matter dissociation, since a higher energy density is expected in the Au-going
direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys.
Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of higher cumulants of net-charge multiplicity distributions in AuAu collisions at GeV
We report the measurement of cumulants () of the net-charge
distributions measured within pseudorapidity () in AuAu
collisions at GeV with the PHENIX experiment at the
Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. ,
) of the net-charge distributions, which can be related to volume
independent susceptibility ratios, are studied as a function of centrality and
energy. These quantities are important to understand the quantum-chromodynamics
phase diagram and possible existence of a critical end point. The measured
values are very well described by expectation from negative binomial
distributions. We do not observe any nonmonotonic behavior in the ratios of the
cumulants as a function of collision energy. The measured values of and can be directly compared to lattice
quantum-chromodynamics calculations and thus allow extraction of both the
chemical freeze-out temperature and the baryon chemical potential at each
center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. C as a Rapid Communication. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV
Measurements of midrapidity charged particle multiplicity distributions,
, and midrapidity transverse-energy distributions,
, are presented for a variety of collision systems and energies.
Included are distributions for AuAu collisions at ,
130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, CuCu collisions at
and 62.4 GeV, CuAu collisions at
GeV, UU collisions at GeV,
Au collisions at GeV, HeAu collisions at
GeV, and collisions at
GeV. Centrality-dependent distributions at midrapidity are presented in terms
of the number of nucleon participants, , and the number of
constituent quark participants, . For all collisions
down to GeV, it is observed that the midrapidity data
are better described by scaling with than scaling with . Also presented are estimates of the Bjorken energy density,
, and the ratio of to ,
the latter of which is seen to be constant as a function of centrality for all
systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010,
2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
Inclusive cross section and double-helicity asymmetry for production at midrapidity in collisions at GeV
PHENIX measurements are presented for the cross section and double-helicity
asymmetry () in inclusive production at midrapidity from
collisions at ~GeV from data taken in 2012 and 2013 at
the Relativistic Heavy Ion Collider. The next-to-leading-order
perturbative-quantum-chromodynamics theory calculation is in excellent
agreement with the presented cross section results. The calculation utilized
parton-to-pion fragmentation functions from the recent DSS14 global analysis,
which prefer a smaller gluon-to-pion fragmentation function. The
results follow an increasingly positive asymmetry trend with
and with respect to the predictions and are in excellent
agreement with the latest global analysis results. This analysis incorporated
earlier results on and jet , and suggested a positive
contribution of gluon polarization to the spin of the proton for the
gluon momentum fraction range . The data presented here extend to a
currently unexplored region, down to , and thus provide additional
constraints on the value of . The results confirm the evidence for
nonzero using a different production channel in a complementary
kinematic region.Comment: 413 authors, 8 pages, 4 figures. v2 is version accepted as PRD Rapid
Communication. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …