2,178 research outputs found

    Cosmological Axion Problem in Chaotic Inflationary Universe

    Get PDF
    We investigate two cosmological axion problems (isocurvature fluctuations and domain-wall formation) in chaotic inflationary universe. It is believed that these problems are solved if potential for the Peccei-Quinn scalar field is very flat. However, we find that too many domain walls are produced through parametric resonance decay of the Peccei-Quinn scalar field. Only the axion model with N=1(N: QCD anomaly factor) is consistent with observations. We also point out that the flat potential is naturally obtained in a supersymmetric extension of the Peccei-Quinn model. If Peccei-Quinn breaking scale FaF_a is about 10^{12} GeV, this model predicts anisotropies of cosmic microwave background radiation due to the axion isocurvature fluctuations which may be detectable in future observations.Comment: LaTeX2e 19 pages including 5 figures (use epsf.sty), revised version to be published in Physics Letters

    Q-ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge-mediated SUSY breaking ?

    Get PDF
    We consider the Affleck-Dine baryogenesis comprehensively in the minimal supersymmetric standard model with gauge-mediated supersymmetry breaking. Considering the high temperature effects, we see that the Affleck-Dine field is naturally deformed into the form of the Q ball. In the natural scenario where the initial amplitude of the field and the A-terms are both determined by the nonrenormalizable superpotential, we obtain only very a narrow allowed region in the parameter space in order to explain the baryon number of the universe for the case that the Q-ball formation occurs just after baryon number production. Moreover, most of the parameter sets suited have already been excluded by current experiments. We also find new situations in which the Q-ball formation takes place rather late compared with baryon number creation. This situation is more preferable, since it allows a wider parameter region for naturally consistent scenarios, although it is still difficult to realize in the actual cosmological scenario.Comment: 27 pages, RevTeX, 21 postscript figures included. The version to be publishe

    MSSM curvaton in the gauge-mediated SUSY breaking

    Full text link
    We study the curvaton scenario using the MSSM flat directions in the gauge-mediated SUSY breaking model. We find that the fluctuations in the both radial and phase directions can be responsible for the density perturbations in the universe through the curvaton mechanism. Although it has been considered difficult to have a successful curvaton scenario with the use of those flat directions, it is overcome by taking account of the finite temperature effects, which induce a negative thermal logarithmic term in the effective potential of the flat direction.Comment: 12 page

    Affleck-Dine mechanism with negative thermal logarithmic potential

    Full text link
    We investigate whether the Affleck-Dine (AD) mechanism works when the contribution of the two-loop thermal correction to the potential is negative in the gauge-mediated supersymmetry breaking models. The AD field is trapped far away from the origin by the negative thermal correction for a long time until the temperature of the universe becomes low enough. The most striking feature is that the Hubble parameter becomes much smaller than the mass scale of the radial component of the AD field, during the trap. Then, the amplitude of the AD field decreases so slowly that the baryon number is not fixed even after the onset of radial oscillation. The resultant baryon asymmetry crucially depends on whether the Hubble parameter, HH, is larger than the mass scale of the phase component of the AD field, MθM_\theta, at the beginning of oscillation. If H<MθH < M_\theta holds, the formation of Q balls plays an essential role to determine the baryon number, which is found to be washed out due to the nonlinear dynamics of Q-ball formation. On the other hand, if H>MθH > M_\theta holds, it is found that the dynamics of Q-ball formation does not affect the baryon asymmetry, and that it is possible to generate the right amount of the baryon asymmetry.Comment: 18 pages, RevTeX4, 9 postscript figures included, final version to appear in Phys.Rev.

    On the Moduli Problem and Baryogenesis in Gauge-mediated SUSY Breaking Models

    Full text link
    We investigate whether the Affleck-Dine mechanism can produce sufficient baryon number of the universe in the gauge-mediated SUSY breaking models, while evading the cosmological moduli problem by late-time entropy production. We find that the Q-ball formation renders the scenario very difficult to work, irrespective of the detail mechanism of the entropy production.Comment: 11 pages, RevTeX, 5 postscript figures include

    Early reionization by decaying particles and cosmic microwave background radiation

    Full text link
    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z \sim 6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation.Comment: 5 pages, 5 figures, fig 2, table 1, and some typos are correcte

    Impact of dark matter decays and annihilations on reionization

    Get PDF
    One of the possible methods to distinguish among various dark matter candidates is to study the effects of dark matter decays. We consider four different dark matter candidates (light dark matter, gravitinos, neutralinos and sterile neutrinos), for each of them deriving the decaying/annihilation rate, the influence on reionization, matter temperature and CMB spectra. We find that light dark matter particles (1-10 MeV) and sterile neutrinos (2-8 keV) can be sources of partial early reionization (z<~100). However, their integrated contribution to Thomson optical depth is small (<~0.01) with respect to the three year WMAP results (tau_e=0.09+/-0.03). Finally, they can significantly affect the behavior of matter temperature. On the contrary, effects of heavy dark matter candidates (gravitinos and neutralinos) on reionization and heating are minimal. All the considered dark matter particles have completely negligible effects on the CMB spectra.Comment: 6 pages, 5 figures; MNRAS, in pres

    Q-ball formation in the wake of Hubble-induced radiative corrections

    Get PDF
    We discuss some interesting aspects of the Q\rm Q-ball formation during the early oscillations of the flat directions. These oscillations are triggered by the running of soft (mass)2({\rm mass})^2 stemming from the nonzero energy density of the Universe. However, this is quite different from the standard Q\rm Q-ball formation. The running in presence of gauge and Yukawa couplings becomes strong if m1/2/m0m_{1/2}/m_0 is sufficiently large. Moreover, the Q\rm Q-balls which are formed during the early oscillations constantly evolve, due to the redshift of the Hubble-induced soft mass, until the low-energy supersymmtery breaking becomes dominant. For smaller m1/2/m0m_{1/2}/m_0, Q\rm Q-balls are not formed during early oscillations because of the shrinking of the instability band due to the Hubble expansion. In this case the Q\rm Q-balls are formed only at the weak scale, but typically carry smaller charges, as a result of their amplitude redshift. Therefore, the Hubble-induced corrections to the flat directions give rise to a successful Q\rm Q-ball cosmology.Comment: 7 revtex pages, few references corrected and added, final version to appear in Phys. Rev.

    Entropy production by Q-ball decay for diluting long-lived charged particles

    Full text link
    The cosmic abundance of a long-lived charged particle such as a stau is tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways to evade the constraints is to dilute those particles by a huge entropy production. We evaluate the dilution factor in a case that non-relativistic matter dominates the energy density of the universe and decays with large entropy production. We find that large Q balls can do the job, which is naturally produced in the gauge-mediated supersymmetry breaking scenario.Comment: 8 pages, 1 figur

    Topological Defects Formation after Inflation on Lattice Simulation

    Get PDF
    We consider the formation of topological defects after inflation. In order to take into account the effects of the rescattering of fluctuations, we integrate the classical equation that describes the evolution of a complex scalar field on the two-dimensional lattice with a slab symmetry. The growth of fluctuations during preheating is found not to be enough for defect formation, and rather a long stage of the rescattering of fluctuations after preheating is necessary. We conclude that the topological defects are not formed if the breaking scale \eta is lager than \sim (2 - 3)\times 10^{16} GeV.Comment: 7 pages, RevTex, 10 postscript figures included; version to be published in Phys. Rev.
    corecore