59 research outputs found

    Comparison of anisotropic rate-dependent models for modelling consolidation of soft clays

    Get PDF
    Two recently proposed anisotropic rate-dependent models are used to simulate the consolidation behaviour of two soft natural clays: Murro clay and Haarajoki clay. The rate-dependent constitutive models include the EVP-SCLAY1 model and the Anisotropic Creep Model (ACM). The two models are identical in the way the initial anisotropy and the evolution of anisotropy are simulated, but differ in the way the rate-effects are taken into consideration. The models are compared first at the element level against laboratory data and then at boundary value level against measured field data from instrumented embankments on Murro and Haarajoki clays. The numerical simulations suggest that at element the EVP-SCLAY1 model is able to give a better representation of the clay response under oedometric loading than ACM, when the input parameters are defined objectively. However, at boundary value level the issue is not as straightforward, and the appropriateness of the constitutive model may depend heavily on the in situ overconsolidation ratio (OCR)

    Plastic anisotropy of soft reconstituted clays

    Get PDF
    The aim of the paper is to extend the experimental validation of the S-CLAY1 model, which is a recently proposed elastoplastic constitutive model that accounts for initial and plastic strain-induced anisotropy. Drained stress path controlled tests were performed on reconstituted samples of four Finnish clays to study the effects of anisotropy in the absence of the complexities of structure present in natural undisturbed clays. Each test involved several loading, unloading, and reloading stages with different values of stress ratio and, hence, induced noticeable changes in the fabric anisotropy. Comparisons between test results and model predictions with the S-CLAY1 model and the modified Cam clay model demonstrate that despite its simplicity, the S-CLAY1 model can provide excellent predictions of the behaviour of unstructured soil

    Bearing capacity charts of soft soil reinforced by deep mixing

    Get PDF
    A series of preliminary design charts were developed to predict the bearing capacity of fully and partially penetrated deep mixing (DM) of soft soil. The charts were produced by a new numerical analysis tool based on discontinuity layout optimisation (DLO) in which a previously proposed homogenisation method was used to define the improvement area. To measure the applicability of implementation of the homogenisation method in the DLO, a series of validation processes was performed against several previous studies under uniform soil strength. A new empirical solution was developed from the DLO method using the homogenisation method for the bearing capacity of soft ground under uniform soil strength, improved by the fully penetrated DM method. Results produced by the DLO approach were compared with existing analytical solutions and better agreement was found from the present model. The charts consider variation in improvement area ratio, column length and strength, and foundation width for the fully and partially penetrated DM cases. The simulations were related to real field cases in which the strength characteristics of soft soil increase with depth. An example is given to demonstrate use of the charts

    Beneficial effects of running and milk protein supplements on Sirtuins and risk factors of metabolic disorders in rats with low aerobic capacity

    Get PDF
    Background Physical activity and dietary intake of dairy products are associated with improved metabolic health. Dairy products are rich with branched chain amino acids that are essential for energy production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy level dependent proteins that affect many cellular metabolic processes. Methods Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in plantaris muscle by western blotting. Results For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a ∼six-fold increase in running capacity and a ∼8% decrease in % body fat. Together with running, protein supplements increased the relative lean mass of the total body weight by ∼11%. In comparison with sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered LDL (−34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7 without an additional effect from exercise. Running diminished and PD supplement increased Sirt6. Conclusion We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk proteins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on metabolism even without running.Peer reviewe

    Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution

    Get PDF
    This paper presents a novel, exact, semi-analytical solution for the quasi-static undrained expansion of a cylindrical cavity in soft soils with fabric anisotropy. This is the first theoretical solution of the undrained expansion of a cylindrical cavity under plane strain conditions for soft soils with anisotropic behaviour of plastic nature. The solution is rigorously developed in detail, introducing a new stress invariant to deal with the soil fabric. The semianalytical solution requires numerical evaluation of a system of six first-order ordinary differential equations. The results agree with finite element analyses and show the influence of anisotropic plastic behaviour. The effective stresses at critical state are constant, and they may be analytically related to the undrained shear strength. The initial vertical cross-anisotropy caused by soil deposition changes towards a radial cross-anisotropy after cavity expansion. The analysis of the stress paths shows that proper modelling of anisotropic plastic behaviour involves modelling not only the initial fabric anisotropy but also its evolution with plastic straining.The research was initiated as part of GEO-INSTALL (Modelling Installation Effects in Geotechnical Engineering, PIAP-GA-2009-230638) and CREEP (Creep of Geomaterials, PIAP-GA-2011-286397) projects supported by the European Community through the programme Marie Curie Industry-Academia Partnerships and Pathways (IAPP) under the 7th Framework Programme

    Anisotropy and destructuration of Murro clay

    No full text

    Three-dimensional analyses of PVD-improved soft soils

    No full text
    2nd International Workshop on Geotechnics of Soft Soils --3 September 2008 through 5 September 2008 -- Glasgow --Three dimensional behaviour of an embankment on soft soils incorporating vertical drains is analysed by using the simple approach proposed by Chai et al. (2001). The method uses an equivalent vertical hydraulic conductivity to represent the drainage by PVDs. The method was applied to 3D numerical analyses of a benchmark embankment on soft soils incorporating PVDs, in combination with complex elasto-plastic models, namely Modified Cam Clay, S-CLAY1 and S-CLAY1S. For verification, the simulations were also compared to 3D multi-drain analyses of the same embankment. Based on these results, the method proposed by Chai et al. appears to be a useful tool for engineering practice. © 2009 Taylor & Francis Group
    corecore