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a b s t r a c t

Background: Physical activity and dietary intake of dairy products are associated with improved meta-
bolic health. Dairy products are rich with branched chain amino acids that are essential for energy
production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of
running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent
exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy
level dependent proteins that affect many cellular metabolic processes.
Methods: Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal
chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water
only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from
serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in
plantaris muscle by western blotting.
Results: For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in
all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a ~six-
fold increase in running capacity and a ~8% decrease in % body fat. Together with running, protein
supplements increased the relative lean mass of the total body weight by ~11%. In comparison with
sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered
LDL (�34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with
exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners
drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein
supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-
carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7
without an additional effect from exercise. Running diminished and PD supplement increased Sirt6.
Conclusion: We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve
Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk pro-
teins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms
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may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on
metabolism even without running.
© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epidemiological and experimental evidence suggest that phys-
ical activity [1], and consumption of dairy products [2,3] associate
with decreased risk for metabolic disorders (MD). Metabolic dis-
order is a constellation of risk factors that commonly occur
together, including high blood glucose, triglycerides and blood
pressure, and low high-density lipoproteins (HDL). Low-density
lipoproteins (LDL) have been associated with traits of metabolic
disorder independent of obesity [4]. The effects of dairy products
for improved metabolic health seem to be mediated by the protein
components and/or minerals of milk [5]. Specifically, casein and
whey are accounted to produce these beneficial effects [5].
Compared to casein, whey is especially rich in branched chain
amino acids (BCAAs) and thus, the difference in their metabolic
effects may arise from the difference in their essential amino acid
compositions [6]. Casein and whey also differ in their postprandial
kinetics and satiating effect, exemplified by slower stomach
emptying of casein than whey [7,8].

BCAAs are essential amino acids used for energy production
especially in the skeletal muscle, but also in other tissues, such as
brain and adipose tissue. In contrast to other amino acids, BCAAs do
not need the first-pass hepatic catabolism for their degradation.
BCAAs have numerous physiological functions, one of those being a
regulatory role for protein synthesis in skeletal muscle [9].
Although the beneficial effects of BCAAs on metabolic health [9,10]
have been linked with the activity of Sirtuin 1 [11,12], the detailed
mechanistic pathways are not thoroughly known. The possible
links to all seven Sirtuins with exercise and BCAA-supplementation
have not been previously studied.

Sirtuins are energy level (NADþ) -regulated enzymes. They can
function as e.g. deacetylases, desuccinylases, demalonylases or
ADP-ribosylases, to modify post-translationally a large set of pro-
teins from histones to enzymes of energy metabolism [13,14]. Of
the sirtuins, Sirt1 has various nuclear and cytosolic targets con-
trolling for instance cell cycle and energy homeostasis [13] and is
considered as one of the key regulators of mitochondrial biogenesis
[12]. Sirt2 regulates gluconeogenesis [15], and is highly expressed
in adipocytes playing a role in metabolic functions [16]. In skeletal
muscle, Sirt3 regulates mitochondrial substrate selection and
metabolic flexibility [13]. Sirt3 level increases e.g. due to caloric
restriction or exercise [17,18] and can be downregulated in MD [19].
The main enzymatic activity of Sirt4 is to control BCAA catabolism:
without Sirt4 BCAA metabolism is reduced in hepatic and cardiac
mitochondria [20]. Sirt5 desuccinylates, demalonylates and deglu-
tarylates a major portion of proteins related to mitochondrial en-
ergy metabolism from Pyruvate Dehydrogenase (PDH) complex, b-
oxidation, BCAA catabolism, and Krebs cycle to electron transport
chain and ATP synthesis, thus being an important regulator of en-
ergy metabolism [21]. Sirt6 is a multifunctional protein [14,22], and
acts as one of the key regulators of glucose homeostasis [23], which
is disturbed in MD. Sirt7, in addition to its regulatory tasks e.g. in
ribosome biogenesis, genome stability, transcription and RNA
metabolism, is a regulator of mitochondrial homeostasis and he-
patic lipid metabolism [24]. An overview of the roles of Sirtuins in
metabolic pathways is shown in Figure S1. Because the protein
levels of sirtuins adapt to acute or long-term stimuli like exercise or
caloric restriction [14], and skeletal muscles account ~40% of the
body mass and almost 30% of the resting energy consumption in
normal human [25], we sought to study the interplay between
skeletal muscle metabolism, Sirtuins and BCAAs.

We previously showed that low capacity runner (LCR) rats score
high for developing MD [26], have greater adiposity [27] and
develop hepatic steatosis even without a high fat challenge [28],
have reduced lifespan [29], and express less BCAA degradation and
fatty acid metabolism-related genes than the high running capacity
(HCR) rats [30]. Thus, it was of special interest to use LCRs to study
the separate and combined effects of long-term BCAA supple-
mentation, and exercise on the variables of metabolic health. We
hypothesized that either exercise and/or BCAA-rich milk protein
supplements would ameliorate the MD risk factors or concurrent
regulatory changes would be seen in skeletal muscle Sirtuin levels.
HCR/LCR rat model is a polygenic model [26], and thus, the data
derived from them are likely more relevant for translational to
humans than that of the commonly used inbred laboratory rodents.

2. Materials and methods

2.1. Animals and intervention measurements

LCR and HCR rats are produced by two-way artificial selective
breeding [26,31]. Shortly, breeding started with a large founder
population of genetically heterogeneous, outbred rats (N:NIH
stock). After testing the running capacity (i.e. phenotyping) at 11
weeks of age, the individuals with the lowest and highest running
distance were mated to produce the two segregating lines for
intrinsic aerobic capacity [31]. For this study full-grown, pheno-
typed, female LCR rats from generation 28 of selection were
transported from the University of Michigan, USA to Finland at the
age of ~5 months. Animals were single-housed in standard condi-
tions (temperature 21± 2�C, humidity 55± 10%, light period from
8.00 to 20.00). The experiment was approved by the Regional State
Administrative Agency, Southern Finland, Finland (ESAVI-2010-
07989/Ym-23), and the Institutional Animal Care& Use Committee
(IACUC) at the University of Michigan. Experiment was conducted
in accordance with the Guidelines of the European Community
Council directives 86/609/EEC, and European Convention for the
Protection of Vertebrate Animals used for Experimental and other
Scientific Purposes (Council of Europe No 123, Strasbourg 1985).
The study is reported according to ARRIVE guidelines.

Before the running and diet interventions, we conducted a
maximal treadmill running capacity test, and measured body
composition, spontaneous activity, and glucose tolerance and in-
sulin sensitivity (see Fig. 1 for study setup). Then, the rats (n¼ 47,
aged 8.7± 0.6 months) were divided into six age- and weight-
matched groups. Three groups were sedentary and three respec-
tive groups were provided running wheels (RW) in their home
cages (Fig. 1). During diet intervention, protein supplements were
given in drinking water. Sedentary control or running control ani-
mals had free access to tap water, whey (W) groups received whey
protein (5.28± 0.04 g/kg, Valio) and the protein drink (PD) groups
received milk protein drink (5.13± 0.02 g/kg, Valio) for 21.4 weeks
(150± 3 days; ~5months). All rats had aspen-chips (Tapvei, Kaavi,
Finland) as a bedding and nestingmaterial. Sedentary animals were
housed in Macrolon IV cages (Techniplast 1354G, Buguggiate, Italy).
For the exercise animals, running wheels were mounted onto the
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Fig. 1. Schematic drawing of the study setup showing the groups and the timeline for
the measurements.
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housing cages (Techniplast 2154F0105, Buguggiate, Italy), and the
wheel (Ø 345mm) revolutions were recorded 24/7 with a self-
constructed computerized system [32]. All rats were given pel-
leted rodent diet (R36, Labfor/Lantm€annen, Malm€o, Sweden) ad
libitum. Both diet drinkswere given each day (seven days aweek) as
fresh and were available ad libitum. Food intake and weight gain
were measured at least twice a week. Details of diets are given in
the Supplement 1, as are the methods for the functional measure-
ments that were done pre- and post-intervention (Fig. 1).

2.2. Necropsy

Animals were euthanized in random order at metestrous/dies-
trous -phase. The estrous stage was determined by vaginal smear,
stained fresh with Giemsa on objective glass [33]. Running wheels
were blocked 24 h before necropsy to avoid acute effects of
running. The rats were fasted overnight, weighed, quickly anes-
thetized with mixture of air and CO2, and then euthanized by car-
diac puncture to collect serum samples. Tissue samples were
weighted, immediately snap frozen in liquid nitrogen and stored
at �80�C. For the weight of plantaris muscle we used the mean
value of the left and right plantaris.

2.3. Western blot

We used previously published protocols [34] for plantaris ho-
mogenization, and Western blotting of the samples. Antibodies
against the following proteins (with the target function) were:
cytochrome C (cytC, mitochondrial hemeprotein, describes number
of mitochondria), acetyl-CoA carboxylase (ACC) and its phosphor-
ylated form pACC (enzyme involved in fatty acid biosynthesis),
hypoxia inducible factor 1a (HIF1a, transcriptional regulator of
cellular response to hypoxia), Pyruvate dehydrogenase lipoamide
kinase isozyme 4 (PDK4, regulator of glucose/fatty acid meta-
bolism), Peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha (PGC-1a, master regulator of mitochondrial
biogenesis), phosphofructokinase (F6PK, a key regulatory kinase in
the glycolysis), and Sirtuins 1e7. Details of the primary antibodies
and methods are given in the Supplement 1. All results were
normalized to Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, glycolytic enzyme that catalyzes break down of glucose).
In addition, the expression of mitochondrial Sirt3-5 were normal-
ized to the markers of mitochondria: number (cytC) and activity
(citrate synthase activity).
2.4. Citrate synthase activity, blood lipids, glucose, insulin and
HOMA-index

To determine the activity of mitochondria we measured the
level of citrate synthase (CS, catalyzes the first reaction of the citric
acid cycle) enzyme activity, in plantaris muscle as previously [35].
Blood lipids were assayed from necropsy serum sample by a kinetic
photometric method with KoneLab. Fasting blood samples (in vivo)
were taken from vena saphena. Blood glucose was measured with
glucose analyser (HemoCue Glucose 201þ, HemoCue AB,
€Angelholm, Sweden). Serum insulin was assayed with ELISA
(Mercodia AB, Uppsala, Sweden). Calculation of HOmeostaticModel
Assessment for insulin resistance (HOMA-index) is a method to
assess function of pancreatic b-cells, and insulin resistance, andwas
calculated with an equation: (fasting blood glucose/fasting insulin
*22.4) [36].

2.5. Statistics

Data were analyzed with MS-Excel 2010 and SPSS (version 22,
IBM© SPSS Statictics). Results are shown as mean± SEM. Data were
assessed with Univariate Anova (UniANOVA) or two-way analysis of
variance using general linear model (GLM) after verifying homo-
geneity of variances by the Levene’s test. In case of a statistically
significant interactive effect with diet and running, a full-factorial
model with contrast coefficient was calculated to assign the statis-
tical differences among the groups. If the interaction was not sta-
tistically significant, data were analyzed by the analysis of variance
followed by post-hoc testing (Sidak’s test or Dunnett’s 2-sided t-
test). The repeated observations from the same rat were accounted
using linear mixed model. Type III tests of fixed effects with Sidak’s
adjustment for multiple comparisons were used. Pearson’s corre-
lation was calculated to estimate correlation between variables. The
level of statistical significance was set at p� 0.05.

3. Results

3.1. Energy intake, body weight and body composition

Energy intake [kcal/body weight] was highest in PD groups
(Figure S2a), being significantly higher than in water drinking
controls (sedentary or running, p< 0.001). Running increased food
(p< 0.001, Figure S2b) and BCAA intake (p< 0.001, Figure S2c) in all
protein-supplemented groups.

The intake of main nutrients differed between diet-groups
(Figure S3), but within groups the levels remained constant
throughout the intervention. Intervention did not affect continuous
weight gain in any group (Figure S2a), but between the two body
composition measurements, both the sedentary PD-group (pre vs.
post intervention, p¼ 0.023) and RW-group (pre vs. post inter-
vention, p¼ 0.001) gained weight (Fig. 2a). When combined with
running, both PD and whey boosted the gain in relative lean mass
(of the total body weight, p< 0.05; ~12 and 10.5%, respectively),
while running alone had no effect (Fig. 2b). However, in all runners
(Fig. 2c), the amount of fat of the total body mass decreased, the
drop being largest in supplemented groups (p < 0.05;
PDþRW, �45%; WþRW -35%). Further, absolute lean mass (g)
increased in all runners (p < 0.001, data not shown).

3.2. Running, aerobic capacity, and spontaneous activity

The amount of voluntary running increased in all groups during
the first 8e11 weeks (Fig. 3a), but to a lesser extent in the WþRW
group. In the RW group, the total running distance was
740 ± 154 km (range 93e1556 km), in PDþRW 932 ± 148 km (range



Fig. 2. Changes in body composition during a 5-month intervention. (a) Weight (g) was measured with a scale, while for the (b) lean body mass (g) [relative to body weight, BW (g)],
and (c) fat mass (g) [relative to BW (g)] rats were anaesthetized and measured with dual-energy X-ray absorptiometry. In the panels, * indicates significant change within group
during intervention, pre vs. post value, linear mixed model,* p < 0.05; ** 0.01 > p � 0.001; *** p < 0.001. # indicates significant difference as compared with ctrl-group, # p < 0.05,
## 0.001 < p < 0.01, ### p < 0.001, GLM.

Fig. 3. (a) Daily voluntary running distances [meters (m), group average ± SEM] were followed using the computerized recording system, the functioning of which was confirmed
using uninterruptible power source. * depicts significant difference of the PDþRW to the RW-group, p < 0.05, # depicts significant difference of the WþRW to the RW-group,
p < 0.05, linear mixed model. For the aerobic fitness i.e. running capacity we conducted treadmill exercise tests, and panel (b) shows the difference between the pre and post-
values as a change in running distance (m). Effects are shown as *** p < 0.001, linear mixed model.
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380e1515 km, PDþRW vs. RW: p ¼ 0.553) and in WþRW
495 ± 97 km (range 70e1023 km, WþRW vs. RW: p ¼ 0.365).
Although the total running distance in the end of intervention did
not differ between the groups, the average daily distances were
different (p< 0.001, Fig. 3a), the PDþRW having the highest and the
WþRW the lowest amount of daily running. Voluntary training
improved running capacity about 8-fold in all running groups
(p < 0.001; Fig. 3b) while diet supplements had no effect.

Running in running wheels introduced a 10-fold difference in
the spontaneous activity in running rats compared to the sedentary
(Fig. 4a, b), the difference being especially clear during the darkness
(Sed vs. RW rats, daytime: p¼ 0.081, and darkness: p< 0.001).
Sedentary lifestyle flattened the circadian spontaneous activity
pattern (Fig. 4a, b). All rats were handled during the daytime be-
tween 14 and 17 h that introduced an insignificant induction in the
activity (Fig. 4aec).

3.3. Glucose tolerance, insulin sensitivity, and fasting blood glucose

Running improved glucose tolerance in all groups shown by the
decreased AUC-values (Table 1; p¼ 0.001). Whey intervention
brought about a ~18% decrease in the glucose sensitivity (Table 1,
glucose tolerance test, pre vs. post value: p ¼ 0.025); whereas
running had no effect; there was no difference between pre and
post AUC-values (WþRW, pre vs. post: p ¼ 0.115).

All groups became more resistant to exogenous insulin during
the intervention (Table 1, Figure S4). At the insulin sensitivity test
before intervention, blood glucose plummeted rapidly, within
10min in all groups, while in the test after intervention, the glucose
drop was significant only at 20min after the insulin injection
(Figure S4b). Insulin sensitivity decreased 20e22% in all sedentary
and running PD- and W-groups (p< 0.05, Table 1). Fasting blood
glucose values did not differ between the groups before or after the
intervention (Figure S4).

3.4. Serum lipids, HOMA-index, and glucose levels in the end of
intervention

At necropsy, fasting insulin and glucose levels, and thereby
HOMA-indices, were equal between the groups (Suppl. Table 2).
Diet had a general decreasing effect on serum LDL levels (Table 2;
effect of PD, �33%, p¼ 0.062; W, �34%, p< 0.05) although none of
the treatments had a significant effect on serum total cholesterol.
Neither the diets nor the running alone affected HDL level, but
whey together with running increased HDL by 0.44mmol/l
(p< 0.05, contrast to sedentary controls, Table 2). Running
decreased triglycerides (Table 2; �0.18mmol/l, �25%, p¼ 0.014),
while PD or W did not. In comparison with the sedentary groups,
running also decreased free fatty acids (�0.21mmol/l, p¼ 0.007,
Suppl. Table 2). Total running amount (total distance during inter-
vention) did not associate with blood lipids. Serum LDL was
inversely associated with protein intake [r¼�0.39, p¼ 0.008].



Fig. 4. Continuous diurnal spontaneous activity index, shown as a mean value (±SEM, please note that error bars are slightly dissociated to diminish their overlapping) in 3 h bins,
was measured during the intervention in sedentary groups (a) and in running groups (with availability to run during the activity measurement, panel b). Measurement was done for
6 animals in each group, the exception being the water drinking ctrl-group from which 4 animals were measured. In panel (c), activity of sedentary animals is shown in a larger
scale. Black-and-white bars near the x-axes indicate the lighting periods in the room (lights were on between 8 a.m. and 8 p.m.). Daily handling of the rats occurred between 2e5
p.m. (rounded rectangle in line graphs a, b, c). In the panel (d), diurnal spontaneous activity (during one representative day, 24 h) is shown as divided into daytime and darkness
(12 h). Number within each pie represents the group mean value of the sum of the total activity during daytime (12 h) or darkness, and the percentages show the distribution of the
activity across circadian phases in each group. Differences between the groups were statistically assessed by the linear mixed model, * p < 0.05, difference between PD and crtl; #
p < 0.05, difference between W and ctrl.

S. Lensu et al. / Metabolism Open 4 (2019) 100019 5
3.5. Mitochondrial markers cytC, CS activity, and PGC-1a

Running increased the expression of cytC by ~2-fold (p< 0.001)
while the diets had no effect on it (Fig. 5a). Generally, both running
and diet supplement increased CS activity in plantaris muscle
(Suppl. Table 2, running by 1.7-fold, p< 0.001, diets by 1.2-fold,
p¼ 0.043). Especially whey together with running increased CS
activity by 1.8 fold (p< 0.001). Expression of PGC-1a increased by



Table 1
AUC-indices: Area under the blood glucose curve was calculated from blood glucose values in glucose tolerance and insulin sensitivity tests (mean± SEM), before and in the
end of the intervention.

Group AUC, glucose tolerance test (a AUC, insulin sensitivity test

Before intervention End of intervention Before intervention End of intervention

ctrl 1187± 61 1267± 107 183± 6 186± 5
PD 1164± 64 1252± 78 179± 5 216 ± 5*
W 1182± 90 1397± 105* 174± 4 213 ± 15*
RW 1107± 68 1003± 51 181± 7 200± 6
PDþRW 1115± 76 989± 42 176± 8 214 ± 13*
WþRW 1169± 58 1020± 53 172± 4 206 ± 13*

Number of animals in each group is 8, except in PDþRW n ¼ 7.
a Significant effect of running, p¼ 0.001 (GLM).
* Significant effect of intervention, difference between pre and post -value, p < 0.05 (GLM).

Table 2
Blood lipids (mean± SEM) in the end of intervention, measured after overnight fasting from serum sample.

Group Triglycerides (mmol/l)a Total cholesterol (mmol/l) HDL (mmol/l)b LDL (mmol/l)c,d

ctrl 0.79± 0.12 3.3± 0.2 2.06± 0.08 0.93± 0.15
PD 0.70± 0.08 3.4± 0.2 (n¼ 7) 2.41± 0.12 (n¼ 7) 0.59± 0.13 (n¼ 7)
W 0.71± 0.10 2.8± 0.1 1.96± 0.14 0.55± 0.10
RW 0.64± 0.10 3.4± 0.2 2.16± 0.09 0.96± 0.11
PDþRW 0.43 ± 0.07* 3.1± 0.3 2.19± 0.15 0.69± 0.15
WþRW 0.57± 0.05 3.5± 0.2 2.50± 0.23b 0.66± 0.12

a Significant effect of running, p< 0.05.
b Interactive effect of running and protein supplements, p < 0.05; contrast of WþRW to ctrl p < 0.05).
c Significant effect of whey, p< 0.05.
d Main effect of diet, p< 0.05.
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1.8 fold in response to running (Fig. 5b; p< 0.001).
Markers of mitochondrial biogenesis and activity were associ-

ated with increase in running capacity: PGC-1a (r¼ 0.56,
p< 0.001), cytC (i.e. mitochondrial quantity, r¼ 0.44, p¼ 0.002),
and CS (i.e. mitochondrial activity, r¼ 0.74, p< 0.001).

3.6. Intermediary metabolic proteins

Neither diets nor exercise had an effect on PDK4 (Fig. 5c) that
plays a key role in regulation of glucose and fatty acid metabolism.
In sedentary animals PD and W diminished ACC while in running
groups both PD and W enhanced ACC [Fig. 5d, interactive effect of
running and diets (p< 0.001)]. Phosphorylation of ACC, that en-
hances fat oxidation, increased (Fig. 5e) in response to whey and to
running. Thus, both diets (PD þ51% and W þ89%) and running
without supplements (þ11%) enhanced the amount of phosphor-
ylated ACC relative to the total amount of ACC (Fig. 5f). PD increased
the expression of glucose metabolism-regulating Hif1a by 4.5-fold
and 3.2-fold in comparison to controls and whey (respectively)
(Fig. 6a). Similarly F6PK, the rate limiting enzyme of glycolysis, was
induced by PD by 3-fold and by 1.8-fold (Fig. 6b) in comparison to
controls and W, respectively. Running had no effect on either Hif1a
or F6PK.

3.7. Sirtuins

Both diets had a similar general tendency to induce Sirt 1
(about þ31%, p ¼ 0.092, Fig. 7a), that is one of the key regulators of
mitochondrial biogenesis [12]. PD combined with running had
most pronounced effect by enhancing Sirt1 level by 1.8-fold in
comparison to controls (p¼ 0.034, Fig. 7a). Neither running nor
protein supplements had an effect on Sirt2 (Fig. 7b). Of the effects of
intervention on the other non-mitochondrial sirtuins, running
decreased Sirt6, which acts as one of the key regulators of glucose
homeostasis [23], by 25% (p< 0.001, Fig. 7c), and the difference was
significant between all diet-matched, sedentary and RW groups
(p< 0.01 for all). However, protein drink increased Sirt6 expression
in comparison to both control diet (1.5-fold, p< 0.001) and whey
(1.4-fold, p< 0.001). Sirt6 associated with fat intake (r¼ 0.61,
p< 0.001), increased adiposity (r¼ 0.33, p¼ 0.023), and with the
downstream targets of it: Hif1a (r¼ 0.60, p< 0.001) and F6PK
(r¼ 0.56, p< 0.001). An inverse association was found with Sirt6
and improved running capacity (r¼�0.33, p¼ 0.023), CS activity
(r¼�0.44, p¼ 0.002), and expression of PGC1a (r¼�0.33,
p¼ 0.022) and total ACC (r¼�0.5, p< 0.001).

Running and diets had an interactive effect on Sirt7 (Fig. 7d;
p ¼ 0.002). Running alone had no effect but both diets increased
Sirt7 in comparison with normal diet (PD, þ53%, p < 0.001 and
W, þ82%, p < 0.001, Fig. 7d). Thus, both BCAA (r¼ 0.68, p< 0.001)
and protein (r¼ 0.77, p< 0.001) intakes were associated with Sirt7,
the regulator of mitochondrial homeostasis and hepatic lipid
metabolism [24].

Because running induced expression of mitochondrial markers,
the data of all mitochondrial sirtuins (Sirt3, 4 and 5) are shown as
expression data, and as normalized to mitochondrial markers CS
and cytC (Fig. 8). Sirt3 was associated with an increase in running
capacity (r¼ 0.5, p < 0.001), CS activity (r ¼ 0.75, p < 0.001), PGC1a
(r ¼ 0.71, p < 0.001), and cytC expression (r ¼ 0.51, p < 0.001), Both
diets (PD, þ65% p ¼ 0.001; W, þ80% p < 0001) as well as running
(þ114%, p < 0.001) increased significantly Sirt3 (Fig. 8a). Despite
normalization to CS the inducing effect of running and both protein
supplements on Sirt3 remained significant (RW, p¼ 0.011; PD,
p¼ 0.011, and W, p< 0.001), but after normalization to cytC Sirt3
induction by running was not significant. Sirt3 was associated with
increased lean mass (r¼ 0.57, p< 0.001) and an inverse association
was found with Sirt3 and DAUC in glucose tolerance tests
(r¼�0.34, p¼ 0.022). Sirt3 was also inversely associated with
increased adiposity (Dfat%, r¼�0.51, p< 0.001), and serum tri-
glyceride level (r¼�0.35, p¼ 0.018).

Compared to sedentary controls, Sirt4 (whose the enzymatic



Fig. 5. Protein content of (a) cytochrome C, (b) PGC-1a, (c) PDK4, (d) Acetyl-CoA-carboxylase (ACC), and (e) phosphorylated Acetyl-CoA-carboxylase (pACC) in plantaris muscle.
Panel (f) shows the expression of phosphorylated Acetyl-CoA-carboxylase (pACC) in relation with total ACC. Representative examples of western blots are shown above each graph,
gel blots are divided because the order of samples in the gel was not equal for the order of groups in results-section. Nonetheless, all gel figures originate from the samples run in the
same gel. Each gel contained protein samples of all groups, and the samples run on different gels were normalized to a control sample, that was repeated in each gel. In the panels, *
indicates significant difference to sedentary control (ctrl), * p < 0.05; ** 0.01 > p � 0.001; *** p < 0.001.

S. Lensu et al. / Metabolism Open 4 (2019) 100019 7



Fig. 6. Protein content of (a) Hif1a and (b) phosphofructokinase (F6PK) in plantaris muscle. Representative examples of western blots are shown above each graph. Gel blots are
divided because the order of samples in the gel was not equal for the order of groups in results-section. Nonetheless, all gel figures originate from the samples run in the same gel.
Western blot gels were run equally as in Fig. 5. In the panels, * indicates significant difference to sedentary control (ctrl), * p < 0.05; ** 0.01 > p � 0.001; *** p < 0.001.

Fig. 7. Protein content of (a) Sirt1, (b) Sirt2, (c) Sirt6, and (d) Sirt7 in plantaris muscle. Representative examples of western blots are shown above each graph. Gel blots are divided
because the order of samples in the gel was not equal for the order of groups in results-section. Nonetheless, all gel figures originate from the samples run in the same gel. Western
blot gels were run equally as in Fig. 5. In the panels, * indicates significant difference to sedentary control (ctrl), * p < 0.05; ** 0.01 > p � 0.001; *** p < 0.001.

S. Lensu et al. / Metabolism Open 4 (2019) 1000198



Fig. 8. Protein content of mitochondrial Sirtuins (a) Sirt3, (c) Sirt4, and (e) Sirt5 in plantaris muscle. Representative examples of western blots are shown above each graph. Gel blots
are divided because the order of samples in the gel was not equal for the order of groups in results-section. Nonetheless, all gel figures originate from the samples run in the same
gel. Western blot gels were run equally as in Fig. 5. To account the effect of intervention on mitochondria, Sirtuins were normalized to mitochondrial markers: cytochrome C [light
grey bars in panels: (a) Sirt3, (c) Sirt4, and (e) Sirt5] and citrate synthase activity [(b) Sirt3, (d) Sirt4, and (f) Sirt5]. In the panels, * indicates significant difference to sedentary control
(ctrl), * p < 0.05; ** 0.01 > p � 0.001; *** p < 0.001.
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activity is controlling BCAA catabolism [20]) was enhanced by 2-
fold in response to running (p< 0.001, Fig. 8c). Independent of
running, PD diminished Sirt4 expression in comparison to both
control diet and whey by 1.7 fold (p< 0.05, Fig. 8c). The diminishing
effect of PD on Sirt4 remained the same after normalization to the
mitochondrial markers CytC (Fig. 8c) or CS (Fig. 8d) (p¼ 0.003 and
p¼ 0.002, respectively). An increase in running capacity was
associated with the level of Sirt4 (r¼ 0.36, p¼ 0.015).

Both PD and W supplements (by 2.6-fold and 2.1-fold, respec-
tively), and running (by 1.3-fold, p< 0.001) increased Sirt5 (Fig. 8e),
the regulator of energy metabolism [21]. The effect remained sig-
nificant even if the Sirt5 expression was normalized to the mito-
chondrial markers (Fig. 8e, f; p< 0.001 for both).

4. Discussion

Sirtuins are important regulators of energy metabolism, and by
finding tools to regulate them in skeletal muscle one could mitigate
MD. Because milk proteins are rich in BCAA, and their consumption
improves metabolic health [9,10], we hypothesized that milk pro-
tein supplements could affect Sirtuins and alleviate MD risk factors
in adult, polygenic female LCR rats. LCR rats have poor running
capacity based on selective breeding, but also suffer from MD risk
factors [26e28]. Because LCR rats have a genetically heterogeneous
background they mimic human genetics better than inbred labo-
ratory animals [37]. Previously, it is shown that the protein levels of
Sirtuins adapt to an acute or long-term stimuli like exercise or
caloric restriction [32,35,38e41]. Therefore we used exercise as a
reference group for diet supplements. In addition that exercise
induced Sirtuins 3e5 and downregulated Sirtuin 6, we found spe-
cific effects of long-term dietary supplementation with milk-based
proteins on Sirtuins in skeletal muscle (plantaris), and on blood
lipids and body composition. These findings are discussed below.

Voluntary running of the whey-supplemented group was
strikingly low, especially during the first 10 weeks of the inter-
vention, amounting to >50% lower daily running distance
compared to the other groups. It is of note, that running capacity
increased, and skeletal muscle mitochondrial markers (citrate
synthase, CS and cytochromeC, cytC) enhanced in a similar manner
in all exercising groups despite large difference in the amount of
running. Because running differed between the diet groups -
especially during the first weeks of the intervention - it warrants
further studies to investigate how the diets affect running moti-
vation [42]. Nevertheless, all trained LCR females improved their
maximal running capacity, an indicator of aerobic fitness, in
response to voluntary training. Neither of the supplemented diets
had an effect on aerobic fitness. This agrees well with a human
study reporting no effect on treadmill running capacity with whey
supplementation [43]. In contrary, a study in mice shows when
combined with a different type of exercise, i.e., swimming, whey
supplement slightly improved swimming capacity to exhaustion
[44].

In our study, energy intake increased as expected [45], in all
running groups while body weight increased only in RW and
sedentary PD groups. In all running groups leanmass increased and
% fat decreased while milk protein supplementation per se had no
effects. However, when the body weight was taken into account,
only the runners with supplementary diets gained in lean mass
during the 5 month intervention. Also randomized clinical trials
(RCTs) have shown that e although not always - long-term exercise
[45] and diets enriched with milk proteins lead to favorable
changes in body composition, albeit the results are depending on
experimental settings and dairy protein diet availability (ad libitum
or combined with energy restriction) [5,46].

One of the risk factors in metabolic disorders is dyslipidemia,
especially heightened triglyceride and lowered HDL level [47,48].
However, elevated LDL cholesterol levels also associate with
increased risk of atherosclerotic disease, supported by the finding
that exercise reduced the risk via decreasing LDL [48]. Our results
show that together with voluntary running, bothmilk protein drink
and whey protein had a similar, lowering effect on fasting blood
LDL level (�32%, PD groups and �36%, W groups, in comparison to
water drinking groups). Total cholesterol was unaffected by inter-
vention treatments, but whey with running increased HDL. Only
running lowered serum triglycerides and free fatty acids compared
to sedentary controls. Protein intake was inversely associated with
LDL level but without exercise, the diets alone did not affect blood
lipids. Previously, only a few studies in obese or MD patients show
similar findings of whey supplements on blood lipids, but without
exercise and the follow-up times have lasted only 12 weeks or less
[47]. In humans, exercise with whey is shown to be effective in
lowering triglycerides only [49].

Glucose tolerance and insulin sensitivity were attenuated by
whey and PD. However, neither of the diets affected fasting blood
glucose, insulin levels, or HOMA-indices. Similar, negative effects on
glucose tolerance and insulin sensitivity have been found previ-
ously using BCAA-rich diets but also opposite findings exist [42].
Previously some RCTs and epidemiological studies have shown that
dairy intake is associated with beneficial effects on lipid meta-
bolism and MD risk factors [50]. To our knowledge, there are no
human studies of long-term dietary interventions, our data is the
first showing the long-term effects in rat. The 5-month treatment
period corresponds to ~20% of the lifespan of female LCR rat [29]; in
human life it would be slightly more than 14 yrs [51].

Since Sirtuins are important regulators of energy metabolism
responding to metabolic demands, we wanted to determine
whether the long-term supplementation of BCAA-rich milk-pro-
teins with or without exercise would induce concurrent changes in
muscle Sirtuins and their downstream targets, and improve risk
factors for MD. Indeed, several coinciding changes were seen as
summarized in the Graphical Abstract. Sirt2 was the only sirtuin
that was not affected by exercise or supplements. The actual
function of Sirt2 in skeletal muscle remains to be shown.

The combination of voluntary running and protein drink for 21
weeks caused a significant increase in Sirt1 while running alone
had no effect. We also found that long-term wheel running
increased the content of PGC-1a, the downstream target of Sirt1
deacetylation [12]. The increase in PGC-1a seems to be indepen-
dent of Sirt1 protein level, but because we did not study Sirt1 ac-
tivity, the role of Sirt1 in PGC-1a function cannot be concluded.
Running induced also an increase in cytC concentration with no
effect of diet, suggesting that exercise activates PGC-1a-mediated
mitochondrial biogenesis while milk protein does not. Another
mitochondrial marker, CS activity increased not only in response to
exercise, but also in response to PD and whey diets, indicating that
protein supplementation has its own effect on the activity of the
mitochondria. While several studies have shown that the expres-
sion of Sirt1 increases in skeletal muscle in response to acute and
long-term exercise [52,53], some studies found no changes or even
a decrease [54]. Moreover, Philp et al. showed that in mice lacking
Sirt1 deacetylase activity in skeletal muscle, mitochondrial
biogenesis and PGC-1a responses were not impaired during acute
exercise [55]. Notwithstanding, exercise is shown to increase Sirt1
activity without changes in its protein level [53], and therefore Sirt1
signaling pathway needs further investigations.

Sirtuins 3, 4 and 5 are located in the mitochondria and function
there as the main regulators of mitochondrial metabolic activity
and flexibility [13,20,21]. Sirt3 and Sirt4 were upregulated by long-
term running, but also whey protein alone increased Sirt3. Com-
bined with exercise both whey and milk protein drink, induced
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about 4-fold increase in Sirt3 in comparison to water drinking
control and about 2-fold increase in comparison to the respective
sedentary group. This upregulation remained significant even after
accounting for the inductive effect of intervention onmitochondrial
biogenesis. Thus, the data favors the hypothesis that exercise and
milk protein supplements have additive effects, consequently
enhancing mitochondrial energy metabolism. In agreement with
previous studies, the running-induced upregulation of Sirt3 was
associated with improved glucose tolerance and body composition.
Previously, mice with muscle-specific overexpression of Sirt3 were
shown to have higher energy expenditure and lower respiratory
exchange ratio than wild-type animals indicating increased use of
lipids for oxidative energy production [56]. In these mice, Sirt3
increased the activity of AMPK that - among a plethora of other
substrates e phosphorylates ACC thus deactivates it [56] turning
lipid metabolism on oxidative mode. Accordingly, in our study both
whey and milk protein drink alone or combined with running,
increased the ratio of p-ACC and total ACC indicating enhanced
oxidation of fatty acids. Unfortunately, we could not measure res-
piratory exchange ratios during the intervention and therefore the
data of fuel use is lacking.

Running-induced increase in Sirt4 suggests increased BCAA
catabolism in the trained skeletal muscle of LCR rats. However,
previously Sirt4 of LCR rats was diminished after 12-week treadmill
training [35] and voluntary running for one year in old rats did not
have any effect [32] in the gastrocnemius muscle. Since Sirt4 is the
regulator of BCAA catabolism [20] further investigation is war-
ranted to show the actual role of Sirt4 in the energy metabolism in
different types of muscles, training modes and during the lifespan.

Running alone did not affect Sirt5 expression in skeletal muscle,
agreeing with our previous study with old rats [32]. However, milk
protein and whey increased Sirt5 expression in plantaris muscle,
independent of the normalization of the data, indicating enhanced
mitochondrial energy metabolism. Thus, it suggests that specific
nutrient supply, and not increased energy demand alone, is
required to enhance Sirt5.

The expression patterns of both Sirt6 and Hif1a along with F6PK
resembled each other in all diet groups but not in exercised ones.
Exercise decreased Sirt6 expression with almost no change in
Hif1a. Interestingly, our results show that casein-containing pro-
tein supplement (PD), but not whey, induced a large increase in
skeletal muscle Hif1a expression, suggesting that different nutri-
tional stimuli may regulate glycolysis via affecting the ratio of Sirt6
and Hif1a. Previously it was shown that casein-containing protein
diet had a protective effect on obesity that was not seen with
proteins from other sources suggesting increased futile cycling of
fatty acids [57]. In skeletal muscle, Sirt6 positively regulates AMPK
having influence on glucose uptake, fatty acid uptake and oxida-
tion, and mitochondrial oxidative phosphorylation [58]. It is shown
to act as a corepressor of Hif1a thus regulating the expression of
glucose transporters and key glycolytic enzymes [23]. In contrast to
our findings, previous studies showed no effect on Sirt6 after 6-
week treadmill running in the skeletal muscle in young healthy
Wistar rats [53] or after one-year running intervention in LCR rats
[32]. The effects of different exercise modes, diets, ageing and their
combinations on the function of Sirt6 in various muscles remain to
be studied.

Protein supplements increased skeletal muscle Sirt7 that was
further augmented by exercise - although similarly to our previous
finding [32], running alone had no effect. One of the tasks of Sirt7 is
to act as regulator of mitochondrial homeostasis and lipid meta-
bolism at least in the liver [24]. However, the effects of Sirt7 on
skeletal muscle metabolism are poorly known, and further research
is needed.
5. Conclusions

Collectively, our data support the idea that combined, long-term
exercise and dietary milk proteins, especially whey, are beneficial
for blood lipid profile and body composition. Running increased
energy intake and lean mass without affecting body weight. The
data adds to existing knowledge by showing the effects of long-
term milk protein consumption or whey at cellular level, enabling
us to screen the underlying health-beneficial mechanisms in the
skeletal muscle. The metabolic effects of long-term running and/or
milk protein consumption may be - at least partially - regulated by
Sirtuins responding in concert to metabolic challenges. Notably,
milk protein supplements had some favorable effects on meta-
bolism, even without running.
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