67 research outputs found

    Effects of the Dietary Approaches to Stop Hypertension (DASH) Eating Plan on Cardiovascular Risks Among Type 2 Diabetic Patients: A randomized crossover clinical trial

    Get PDF
    Objective: To determine the effects of the Dietary Approaches to Stop Hypertension (DASH) eating pattern on cardiometabolic risks in type 2 diabetic patients. Research design and methods: A randomized crossover clinical trial was undertaken in 31 type 2 diabetic patients. For 8 weeks, participants were randomly assigned to a control diet or the DASH eating pattern. Results: After following the DASH eating pattern, body weight (P = 0.007) and waist circumference (P = 0.002) reduced significantly. Fasting blood glucose levels and A1C decreased after adoption of the DASH diet (−29.4 ± 6.3 mg/dl; P = 0.04 and −1.7 ± 0.1%; P = 0.04, respectively). After the DASH diet, the mean change for HDL cholesterol levels was higher (4.3 ± 0.9 mg/dl; P = 0.001) and LDL cholesterol was reduced (−17.2 ± 3.5 mg/dl; P = 0.02). Additionally, DASH had beneficial effects on systolic (−13.6 ± 3.5 vs. −3.1 ± 2.7 mmHg; P = 0.02) and diastolic blood pressure (−9.5 ± 2.6 vs. −0.7 ± 3.3 mmHg; P = 0.04). Conclusions: Among diabetic patients, the DASH diet had beneficial effects on cardiometabolic risks

    Network formation by contact arrested propagation

    Get PDF
    We propose here a network growth model which we term Contact Arrested Propagation (CAP). One representation of the CAP model comprises a set of two-dimensional line segments on a lattice, propagating independently at constant speed in both directions until they collide. The generic form of the model extends to arbitrary networks, and, in particular, to three-dimensional lattices, where it may be realised as a set of expanding planes, halted upon intersection. The model is implemented as a simple and completely background independent substitution system. We restrict attention to one-, two- and three-dimensional background lattices and investigate how CAP networks are influenced by lattice connectivity, spatial dimension, system size and initial conditions. Certain scaling properties exhibit little sensitivity to the particular lattice connectivity but change significantly with lattice dimension, indicating universality. Suggested applications of the model include various fracturing and fragmentation processes, and we expect that CAP may find many other uses, due to its simplicity, generality and ease of implementation

    Multi-Objective Optimization of Home Healthcare with Working-Time Balancing and Care Continuity

    No full text
    The ageing population in most parts of the world becomes a grand challenge for healthcare decision-makers. The care of elderly persons and general hygienic care at patients’ homes are two main reasons to motivate an optimization problem, namely, home healthcare (HHC). A robust plan for caregivers to have sustainable HHC operations management is to consider working-time balancing of caregivers, care continuity and uncertainties, e.g., the uncertainty of patients’ availability in addition to service and travel times as well as the regulations of companies to meet the standards of high-quality home care services. Based on these motivations and challenges to this field, this study firstly established a multi-objective robust optimization of the HHC which is multi-depot, multi-period and multi-service. The demand of each patient in each period may be different due to promptness of services. Each caregiver plays one of the roles of nurses, doctors, physiotherapists and nutritionists. The types of services are directly related to these roles. The objectives were optimizing the total cost of logistic activities as well as the total unemployment time of caregivers and care continuity. As a complicated optimization problem, this study innovated efficient heuristics and an enhanced nature-inspired metaheuristic. Finally, an extensive comparison with regards to the criteria of the multi-objective algorithms’ assessment was conducted. Some sensitivity analyses were conducted to conclude some practical insights

    Sustainable and Robust Home Healthcare Logistics: A Response to the COVID-19 Pandemic

    No full text
    Today, research on healthcare logistics is an important challenge in developing and developed countries, especially when a pandemic such as COVID-19 occurs. The responses required during such a pandemic would benefit from an efficiently designed model for robust and sustainable healthcare logistics. In this study, we focus on home healthcare logistics and services for planning the routing and scheduling of caregivers to visit patients’ homes. Due to the need for social distancing during the COVID-19 pandemic, these services are highly applicable for reducing the growth of the epidemic. In addition to this challenge, home healthcare logistics and services must be redesigned to meet the standards of a triple bottom line approach based on sustainable development goals. A triple bottom line approach finds a balance between economic, environmental, and social criteria for making a sustainable decision. Although, recently, the concept of green home healthcare has been studied based on the total cost and green emissions of home healthcare logistics and services, as far as we know, no research has been conducted on the formulation of a triple bottom line approach for home healthcare logistics and services. To achieve social justice for caregivers, the goal of balancing working time is to find a balance between unemployment time and overtime. Another contribution of this research is to develop a scenario-based robust optimization approach to address the uncertainty of home healthcare logistics and services and to assist with making robust decisions for home healthcare planning. Since our multi-objective optimization model for sustainable and robust home healthcare logistics and services is more complex than other studies, the last novel contribution of this research is to establish an efficient heuristic algorithm based on the Lagrangian relaxation theory. An initial solution is found by defining three heuristic algorithms. Our heuristic algorithms use a symmetric pattern for allocating patients to pharmacies and planning the routing of caregivers. Then, a combination of the epsilon constraint method and the Lagrangian relaxation theory is proposed to generate high-quality Pareto-based solutions in a reasonable time period. Finally, an extensive analysis is done to show that our multi-objective optimization model and proposed heuristic algorithm are efficient and practical, as well as some sensitivities are studied to provide some managerial insights for achieving sustainable and robust home healthcare services in practice

    Study of the relation between ethical climate dimensions and Job satisfaction among employees at Isfahan office of Education

    No full text
    The purpose of this research was to study the relation between ethical climate dimensions and Job satisfaction among employees at Isfahan office of Education in academic year 1388-89-. Research method was descriptive (correlative) and statistical population of the study were all 735 employees of all six educational districts of Isfahan that 205 of them were selected as statistical sample. Research instruments were two questionnaires: first, victor and collen's ethical climate (1987) with 29 items and nine dimensions; second, lee (2000) (1987) with 29 items and nine likert scale. Reliability coefficients of questionnaire were calculated through chronboch alfa at 076 and 087 respectively. Pearson correlation coefficient and regression analysis were used to determine the amount of correlation between ethical climate dimensions and Job satisfaction. Findings showed that personal Profit had relation with Job satisfaction but dimensions of organizational profit, efficiency, empathy, personal morality, and organizational procedures had no relation with Job satisfaction. Also, climate of team work, social accountability, rules and professional codes had positive and significant relation with Job satisfaction

    A Novel Blind Watermarking of ECG Signals on Medical Images Using EZW Algorithm

    No full text

    Development of a cellulose-based scaffold for sustained delivery of curcumin

    No full text
    Due to the unique properties of cellulose-based materials, they are attractive to be developed in industrial pharmaceutics and biomedical fields. Carboxymethyl-diethyl amino ethyl cellulose scaffold (CM-DEAEC) has been synthesized in the current work as a smart novel derivative of cellulose with a great functionality in drug delivery systems. The scaffolds were well cross-linked with 2 (v/v) epichlorohydrin (ECH), loaded with curcumin (Cur), and then were analyzed by FT-IR, XRD, SEM, and mechanical strength. While developing the ideal delivery platform, curcumin (an important chemotherapeutic agent) was chosen due to its hydrophobicity and poor bioavailability. Thus, we developed a novel scaffold for efficient loading and controlled releasing of curcumin. The swelling ratio of 136, high curcumin entrapment efficiency (up to 83.7), sustained in vitro drug release profile, and appropriate degradability in three weeks confirmed significant properties of the CM-DEAEC scaffold. More than 99 antibacterial activity has been observed by the cross-linked curcumin loaded CM-DEAEC scaffolds. Cytotoxicity studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4�,6-diamidino-2-phenylindole (DAPI) staining showed that cross-inked curcumin loaded CM-DEAEC scaffolds did not show any toxicity using L929 cells. All experiments were compared with CMC scaffolds and better characteristics of the novel scaffold for drug delivery have been confirmed. © 2021 Elsevier B.V
    corecore