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Abstract Ensemble- and optimization-based parameter
estimation is commonly used to calibrate simulation models
of fractured reservoirs to measured data. Traditionally, sta-
tistical data on small-scale fractures are upscaled to a dual
continuum model in a single step, and the subsequent his-
tory matching procedure makes adjustments to the upscaled
parameters. In this paper, we show that the resulting reser-
voir models may be inconsistent with the initial fracture
description, meaning that the reservoir parameters do not
correspond to a physically valid combination of fracture
parameters. A number of numerical examples is provided,
which illustrate why and when the problem occurs. We uti-
lize an invertible analytical fracture upscaling method, and
deviations from the fracture model can thus be quantified
in each case. We show that consistency with the frac-
ture model is preserved if fracture parameters are history
matched directly, if the relation between inversion variables
and fracture parameters is linear, or if an unbiased Bayesian
sampling method is used. We also show that preserving con-
sistency is less important if the uncertainty of the fracture
upscaling method is large.
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1 Introduction

Fractures in geological formations are of importance in
petroleum production, groundwater contamination assess-
ment, geothermal energy production, and CO2 storage. In
all of these applications, assisted history matching through
residual minimization or bayesian inversion is commonly
applied [17]. A particular challenge with fractured reser-
voirs is that the reservoir parameters, such as permeabil-
ity and porosity, originates from upscaling of a fracture
network geometry. By perturbing the reservoir parame-
ters individually to match production history, one runs the
risk of creating parameter combinations that are incon-
sistent with the underlying fracture description, meaning
that the perturbed parameters may correspond to improb-
able or impossible fracture configurations. In this paper,
we investigate whether or not problems of this kind
may occur during history matching of a dual-continuum
reservoir.

We choose to put our emphasis on the role of frac-
tures in petroleum engineering, where both upscaling and
history matching are routinely used. Typically, fractured
petroleum reservoirs are modeled using the dual-porosity
model of Warren and Root [24], with the multi-phase exten-
sions given by Kazemi et al. [10]. Fractures can have a
positive, neutral, or negative effect on petroleum produc-
tion, depending on the fracture network characteristics and
the wettability of the reservoir [5]. Even though the pres-
ence of fractures generally enhances the permeability of
the reservoir, it may also severely restrict the use of water
injection, since injected water may bypass the oil resid-
ing in the porous matrix by flowing directly through the
fractures. A proper characterization of the fractures and
their physical properties is therefore essential in order to
devise a successful production strategy. Many sources of
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fracture information may be available to the field operator,
for instance, well logs [5, 12], dual-porosity well tests [7],
seismic data [18], outcrop analogs, and core samples.

To ensure that the history matched reservoir stays consis-
tent with the underlying fracture model, one may choose to
history match the fracture parameters directly, and include
fracture upscaling as an integral part of the parameter inver-
sion workflow, as illustrated in Fig. 1. In the current work,
we compare this method with the more traditional approach
of targeting the reservoir parameters. A minor downside of
using fracture parameters as inversion variables, is the added
computational run time associated with the upscaling step.
This disadvantage can be eliminated by using analytical
upscaling methods (e.g., [13, 20, 21]), which have negligi-
ble computational cost. If numerical upscaling is required,
one may first upscale a selected set of fracture parameters in
a pre-processing stage and interpolate between them during
history matching.

Using fracture parameters as primary inversion variables
also facilitates joint inversion with other data types, such as
seismic or electromagnetic data. Couplings of this type has
been suggested, e.g., by Jakobsen et al. [8] and Sharani et
al. [22]. In these applications, fracture parameters are the
natural choice of inversion variables, since all the relevant
physical properties can be calculated from them.

We begin this paper with a section on fracture upscaling,
where we describe the analytical upscaling method used in
our numerical examples. We employ an invertible fracture
upscaling scheme, which enables us to quantify how much
a given reservoir model deviates from a physically valid
fracture description.

Then follows a section on history matching methods,
where we outline three different techniques; the rejection
method, the Ensemble Kalman Filter and the Randomized
Maximum Likelihood method. We also explain why some

Fig. 1 Traditional and alternative history matching loop. Left: Tra-
ditional history matching loop, where upscaling is only performed
initially. Right: Alternative history matching loop, where upscaling is
an integral part of the procedure

of these inversion methods are likely to generate fracture-
inconsistent reservoir models unless fracture parameters are
history matched directly.

Finally, we apply the history matching methods to
numerical test cases, for different choices of inversion vari-
ables. We also investigate the effect model nonlinearity,
upscaling uncertainty and the prior distribution variance.
Together, these examples are meant to give the reader an
intuitive understanding of when fracture-inconsistent reser-
voir parameters may occur and what the consequences may
be.

2 Fracture upscaling model

Upscaling of fracture data to reservoir simulator param-
eters can be done either through numerical or analytical
upscaling. In numerical upscaling, a geometric representa-
tion of the fracture network is generated and meshed. A
set of boundary conditions is applied, and the resulting flux
through the matrix-fracture system is calculated [6, 9]. In
analytical upscaling, the true fracture network is represented
by a simplified, idealized geometry, whose properties is
calculated analytically [13, 15, 21]. The upscaled param-
eters of interest are the effective permeability, porosity,
and the transfer coefficient (for dual-continuum models)
or the pseudo relative permeability function (for single-
continuum, multi-phase models).

In a history matching application, analytical fracture
upscaling is arguably the better choice, at least when frac-
ture parameters are used as inversion variables. This is
primarily because of the computational cost, which may be
large for numerical upscaling methods. Another benefit of
analytical methods is that gradients can be obtained directly,
which is important for gradient-based inversion methods.

In the following paragraphs, we describe the upscaling
method used in our examples. We have intentionally chosen
a simplified analytical model to provide a clean and intuitive
illustration of the main concepts. Analytical and numerical
models that account for more complicated physics and frac-
ture geometry are available in the literature and may easily
be integrated into the workflow we propose.

2.1 Geometry

We assume that the fractures can be represented by ran-
domly oriented circular discs, with perfectly smooth, paral-
lel surfaces. We also assume that the fractures are distributed
evenly in space. This is the simplest fracture model that still
retains enough complexity to be illustrative.

While investigating the issues presented in this paper,
models with anisotropic (Fisher-distributed) fracture orien-
tations were considered as well [4, 14]. The results for
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these models were very similar to those for the isotropic
models.

2.2 Porosity

Fracture porosity is simply given by

φ = aA, (1)

where a is the fracture aperture, and A is the fracture den-
sity measured in surface area per bulk volume. Assuming
circular fractures, the fracture density is given as

A =
∑

πNRR
2, (2)

where NR is the number per volume of fractures with radius
R, and the sum is over all possible fracture radii R.

The above model is valid for fractures with smooth,
parallel surfaces. In the case of rough-walled fractures,
the aperture a in Eq. 1 represents the average mechanical
aperture.

2.3 Transfer coefficient

The transfer coefficient, which describes how freely the
fluid can flow between the fracture and matrix media, is
commonly calculated using an expression by Kazemi et al.
[10]. The expression was originally formulated for three
orthogonal, infinitely extending fracture sets,

σ = 4

(
1

L2
1

+ 1

L2
2

+ 1

L2
3

)
, (3)

where L1, L2, and L3 are fracture spacings in each orthog-
onal direction. Noting that fracture spacing is the inverse of
fracture density, an alternative formulation can be used,

σ = 4
(
A2

1 + A2
2 + A2

3

)
, (4)

where A1, A2 and A3 are the fracture densities of each frac-
ture set. Assuming equal densities in all directions, we have

σ = 4

3
A2, (5)

where A is the total fracture density.

2.4 Permeability

The effective fracture permeability is calculated using the
method of Mourzenko et al. [13],

K = 2

3
f T A, (6)

where K is the effective permeability of the fracture net-
work, f is the connectivity, T the fracture transmissibility
and A the fracture density. The equation was originally
formulated for anisotropic fracture orientations and more
general fracture shapes, but this is not considered here.

The fracture transmissibility is calculated using the ide-
alized cubic law,

T = a3

12
. (7)

In the case of rough-walled fractures, the aperture a in
Eq. 7 is substituted by the hydraulic aperture, which may be
significantly smaller than the average mechanical aperture.
Models that relate the hydraulic and mechanical aperture
are available in the literature, see for instance the review by
Singhal and Gupta [23].

The connectivity f is calculated from fracture parameters
as

f = max (0, βA − 2.41)2

βA (βA + 3.1)
, (8)

β = π2Ravg, (9)

where Ravg is the density-weighted average fracture radius.
Equation 8 is based on experimental fitting to numerical
data, we refer to Mourzenko et al. [13] for details.

2.5 From upscaled parameters to fracture parameters

As a tool for analyzing fracture-related correlations in
history-matched reservoir models, we introduce here the
inverseof the upscaling model. Given the fracture parameters
a, A and Ravg, the upscaled parameters are given as

K = 1 + δ

18
f a3A, (10)

σ = 4

3
A2, (11)

φ = aA, (12)

where the connectivity f is defined by Eq. 8. In Eq. 10,
we have introduced the unknown upscaling error δ, which
represents the inaccuracy of Eqs. 7 and 8. It may also be
used to represent the uncertainty of the average fracture size
Ravg.

The mapping from a, A, δ to K , σ , φ is a bijective map-
ping unless the fracture network is fully disconnected, a
case which we do not consider in this work. The inverse of
Eqs. 10–12 can be calculated explicitly,

A = 1

2

√
3σ , (13)

a = 2φ√
3σ

, (14)

1 + δ = 27Kσ

2 f φ3
. (15)

In the above set of equations, Eq. 15 is particularly impor-
tant, since δ effectively describes the deviation from the
fracture upscaling model. If the value of δ computed from
Eq. 15 is much larger than the upscaling uncertainty, it



556 Comput Geosci (2017) 21:553–565

indicates that the upscaled parameters are inconsistent with
the underlying fracture description.

3 History matching methods

History matching is the process of modifying reservoir
parameters in such a way that the model agrees with observed
reservoir behavior. The ultimate goal is to obtain a simulation
model that is more predictive of future events. To reach this
goal, the model should not only match previous observa-
tions, but also be physically realistic. If unphysical parame-
ters are specified, the model may have poor predictive power
even though it matches historical field data.

In this paper, we are concerned with keeping the reservoir
parameters consistent with the underlying fracture model
during history matching. By this, we mean that the perme-
ability, porosity, and transfer coefficient should always cor-
respond to a feasible set of fracture parameters. This is not
always the case. For instance, a grid block with low poros-
ity, a small transfer coefficient and high permeability is not
consistent with the fracture model described in Section 2.
As seen by Eqs. 13–14, a small porosity and transfer coef-
ficient indicate a small fracture density and aperture, which
is incompatible with having a large permeability.

As explained in the following paragraphs, inconsistent
parameters may arise if upscaled reservoir parameters are
used as primary variables during history matching. An alter-
native approach is to history match the fracture parameters
directly, and include fracture upscaling in the inversion
workflow (Fig. 1). This way, a fracture description of the
reservoir is obtained directly, and the problem of inconsis-
tent parameters is eliminated.

3.1 Bayesian inversion framework

To explain why parameters may become inconsistent with
the fracture model, we employ the Bayesian framework,
which is commonly used in reservoir history matching. In
this framework, the model parameters m are viewed as
stochastic variables, each having a prior distribution repre-
senting the initial parameter uncertainty. The forward model
g (the reservoir simulator) is a function that takes model
parameters as input, and gives data (typically well pressure,
flow rate and fluid composition) as output. The data is com-
pared with measurements d, and a noise-weighted mismatch
is computed. As is common, we assume here that the noise
is gaussian with standard deviation ε. This gives a normally
distributed likelihood with mean d and standard deviation ε.
The parameters’ posterior distribution is calculated as the
product of the prior distribution and the likelihood,

ppost (m) = kppri (m) plikeli (g(m)) , (16)

where k is a normalization constant and ppost, ppri, and
plikeli are the probability densities for the posterior, prior,
and likelihood, respectively.

Equation 16 can be used either with fracture parame-
ters or upscaled reservoir parameters as primary variables.
Let m f denote fracture parameters, and let mr be reservoir
parameters. The traditional way of coupling upscaling with
history matching is through two steps: The upscaling step

mr = U
(
m f

)
, (17)

where U is the upscaling model, and the history matching
step,

prpost (mr ) = kprpri (mr ) plikeli (g(mr )) . (18)

Alternatively, this can be done in a single step using fracture
parameters as primary variables,

p f
post

(
m f

) = kp f
pri

(
m f

)
plikeli

(
g(U (m f ))

)
. (19)

In Eqs. 18 and 19, the superscripts r and f denote probabil-
ity densities for reservoir and fracture parameters, respec-
tively. The probability density distributions are related as

p f
post(m f ) = k′ prpost

(
U (m f )

)
, (20)

p f
pri(m f ) = k′′ prpri

(
U (m f )

)
, (21)

where k′ and k′′ are normalization constants.

3.2 Why and when do inconsistent parameters occur?

Equations 18 and 19 are mathematically equivalent, so it
may seem that either choice of inversion variables gives the
same result. However, it is usually very difficult to generate
an unbiased sample of the posterior distribution when the
number of parameters is high. Common history matching
methods therefore approximate the distribution in one way
or another, and the choice of primary variables may there-
fore have a big impact. When using reservoir parameters as
primary variables, one runs the risk of polluting the poste-
rior distribution with parameter combinations that does not
correspond to physically valid fracture parameters.

This is especially true if one or more of the fracture
parameters, for instance, the upscaling uncertainty, is nar-
rowly defined in the prior distribution. A simplified illus-
tration of this situation is given in Fig. 2. If the upscaling
uncertainty is small, or any of the other fracture parameters
are narrowly defined, or there is a strong linear correlation
in the fracture parameter space, this translates into a strong
nonlinear correlation in the reservoir parameter space. This
is no issue for history matching methods that preserve non-
linear correlations. But methods that only preserve linear
correlations may run into problems, and generate poste-
rior distributions that contain physically invalid parameter
combinations.
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Fig. 2 The figure illustrates
three alternative pathways to a
history matched fracture model.
1 Apply history matching
directly to the fracture
parameters. 2 Apply an unbiased
(exact) history matching
algorithm in the reservoir
parameter space. 3 Apply an
approximate history matching
algorithm that only preserves
linear correlations, in the
reservoir parameter space. If the
upscaling uncertainty is small
(or there is a strong linear
correlation in the prior), method
(3) may generate posterior
distributions that contain
physically invalid combinations
of fracture parameters

On the other hand, by using fracture parameters as pri-
mary variables, a fracture description of the reservoir is
obtained directly. Thus, the problem of inconsistent param-
eters is avoided, regardless of the history matching method
chosen.

3.3 The rejection method

An unbiased sample of the posterior distribution can be gen-
erated using the rejection method. For normally distributed
measurement noise, the simplest version of the method is
given by the following algorithm [17]: Let m be a vector of
parameters drawn from the prior distribution. Compute the
noise-weighted squared mismatch

z2 =
∥∥∥ g(m)−d

ε

∥∥∥
2
, (22)

where g is the forward model, d are the measurements, and
ε is the measurement noise. The parameters m are accepted
into the sample with a probability of p = exp(−0.5z2). This
process continues until the desired number of samples have
been generated.

Since the rejection method gives an unbiased sam-
ple, it makes no difference whether fracture parameters
or upscaled parameters are used as primary variables. If
upscaled parameters are used, the structure of the underly-
ing fracture model is kept as nonlinear correlations within
the prior distribution, which are preserved during inversion.
However, the method becomes unfeasible when the number

of parameters is high, due to the exponentially increasing
number of rejected samples.

3.4 The Ensemble Kalman Filter

Within the last decade, the Ensemble Kalman Filter (EnKF)
has gained popularity in the petroleum industry. An overview
of the method and its applications in reservoir engineering
is given by Aanonsen et al. [1]. The method approximates
the prior by a plurigaussian distribution, calculated using an
ensemble of prior reservoir models and corresponding sim-
ulation data. The model update is then feasible to compute,
even when the number of parameters is high.

A simple version of the EnKF is described here. Let M
be a matrix representing the prior ensemble, where each col-
umn contains the parameters of one ensemble member. The
model update step in the EnKF can then be expressed as
Mpost = M + Mdiff , where Mpost represents the posterior
ensemble, and Mdiff is given as

Mdiff = �M�D� [
CD + �D�D�]−1

(Dobs − D + ε) .

(23)

Here, CD is the covariance matrix for the data noise, Dobs

is the observed production data, and ε is a matrix of real-
ized data noise. The predicted production data for the prior
ensemble is given by the matrix D. The symbol � denotes
the square root of the ensemble covariance in the form of

�M = (
M − M

) / √
N − 1, (24)
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where N is the number of ensemble members, and M is the
ensemble mean of M .

In the EnKF, measurements are divided into groups,
which are history matched one at a time. If all measurements
are history matched simultaneously, the method is called
the ensemble smoother (ES). In this case, iterative variants
of Eq. 23 are recommended since the pure ES is sensitive
to model nonlinearities. One simple iterative method is the
multiple data assimilation (MDA) method by Emerick and
Reynolds [3], where the update step is given by

Mdiff = �M�D� [
CD + n�D�D�]−1

(Dobs − D + ε) ,

(25)

and n is a predetermined number of iterations.
The EnKF estimate of the posterior distribution is biased

towards plurigaussian distributions. If upscaled parameters
are used as inversion variables, correlations between the
parameters may be linearized, and the parameters may then
become incompatible with the fracture model.

3.5 Residual minimization

A slightly different approach to history matching is resid-
ual minimization. In this approach, optimization techniques
are used to modify the model parameters in order to min-
imize the misfit between observed measurements and data
predicted from simulations. To avoid overfitting the param-
eters to noisy measurements, unphysical behavior (such as
large oscillations) are penalized during optimization.

A particularly useful method within this class is the
randomized maximum likelihood (RML) [11, 19]. In this
method, optimization is performed on the objective function

f (m) = (m − m̃)� C−1
M (m − m̃)

+ (g(m) − d + ε)� C−1
D (g(m) − d + ε) , (26)

where the first term represents the deviation from a ref-
erence reservoir, and the last term is the deviation from
measurements. The vector m is the model parameters, m̃
is the parameters of the reference model, CM is the prior
covariance matrix, g is the forward model, d is the mea-
surements, CD is the covariance matrix for the measurement
noise, and ε is a vector of realized measurement noise.

In the RML, optimization of Eq. 26 is performed multi-
ple times, each time with a different value for the realized
noise ε and the reference model m̃, which is drawn from
the prior distribution. This way, one obtains an assessment
of the uncertainty. In fact, the method is equivalent to the
Bayesian approach if the forward model g is linear and the
prior distribution is gaussian [16].

If reservoir parameters are used as primary variables dur-
ing residual minimization, there is no guarantee that the
resulting model is consistent with the underlying fracture

model, since the deviation from the fracture model (given by
δ in Eq. 15) is not penalized. On the other hand, if fracture
parameters are history matched directly, proper penaliza-
tion of δ is given by the first term of Eq. 26, and a fracture
description is obtained directly.

The RML can be combined with any suitable opti-
mization technique. In this paper, we use the Levenberg-
Marquardt algorithm with numerically computed gradients
[2]. Since the prior covariance matrix CM may be singu-
lar or nearly singular, we use a truncated singular value
decomposition (TSVD) to rewrite the objective function
(26). Specifically, ifU	U� = CM is a TSVD factorization,
the objective function can be rewritten as

f (x) = x�	−1x + g�
x C

−1
D gx , (27)

where x = U� (m − m̃) and gx = g(Ux + m̃) − d + ε.

4 Numerical examples

In this section, we use simple numerical examples to illus-
trate how history matching may give parameters that are
inconsistent with the fracture model. We consider a sin-
gle reservoir grid block with randomly oriented fractures of
known size R, but unknown fracture density A and aperture
a. Table 1 gives a summary of the prior distributions used in
the various examples.

In all cases, we study the effect of assimilating a noisy
permeability measurement of 300 mD, for different choices
of primary variables and inversion methods. The “forward
model” is therefore a function that calculates the permeabil-
ity from the inversion variables. If fracture parameters are
used as primary inversion variables, the forward model is
the permeability upscaling Eq. 10. If upscaled parameters
are used, the forward model is simply a function that selects
the permeability value.

4.1 Exact, nonlinear upscaling model

In the prior model defined by Table 1, case 1, the upscaling
error is assumed to be zero. Inserting δ = 0 into Eq. 15 and
solving for f , we obtain

f = 27Kσ

2φ3
. (28)

Equation 28 provides an intuitive way of testing whether
the posterior reservoir parameters are consistent with the frac-
ture model. Since the fractures in case 1 are also infinitely
extending, the connectivity f is equal to 1 within the
prior distribution. There is no variability, so we must have
f = 1 in the posterior distribution as well, by Eq. 16. In
other words, if the connectivity f calculated from Eq. 28
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Table 1 Measurement data and prior distribution of fracture parameters used for the single block numerical examples

Prior mean (μ) Prior scatter (s) Measurement

a A δ R a A δ R Km SD(ε)

Case 1 0.2 mm 1 m−1 0 ∞ 0.04 mm 0.4 m−1 0 0 300 mD 30 mD

Case 2 0.2 mm 1 m−1 0 5 m 0.04 mm 0.4 m−1 0 0 300 mD 30 mD

Case 3 0.2 mm 1 m−1 0 5 m 0.08 mm 0.8 m−1 0 0 300 mD 100 mD

Case 4 0.2 mm 1 m−1 0 5 m 0.04 mm 0.4 m−1 0.1 0 300 mD 30 mD

Case 5 0.2 mm 1 m−1 0 5 m 0.08 mm 0.8 m−1 0.1 0 300 mD 100 mD

The fracture parameters a, A, δ and R are defined in Section 2. Each parameter is uniformly distributed with range [μ − s, μ + s]. The variable
Km is the measured permeability. The measurement noise is gaussian with standard deviation SD(ε)

is different than 1 in the posterior distribution, then the
reservoir parameters are not consistent with the fracture
model.

Figure 3a plots the calculated value of f for 100 sam-
ples of the posterior distribution, using reservoir parameters
as primary variables. The values are plotted against fracture
density as defined by Eq. 13. Three different history match-
ing methods are employed: the rejection method, the ES,
and the RML.

The rejection method predicts a connectivity of f = 1
everywhere, which is the correct result. This is not surpris-
ing, since the rejection method gives an unbiased estimate of
the posterior distribution. Even though reservoir parameters

are used as inversion variables, the underlying fracture
model is kept as nonlinear correlations in the prior dis-
tribution. These correlations are preserved during history
matching.

On the other hand, the posterior parameters obtained
using the ES and RML methods clearly break with the frac-
ture model. The methods give values of f in the range
between 0.5 and 1.5, and an artificial correlation between
fracture density and connectivity is introduced as well. Both
methods give nearly identical results, which is due to the
fact that ES and RML are equivalent if the forward model
is linear. Recall that the forward model simply selects the
permeability value, which is clearly a linear operation.

Fig. 3 Posterior fracture
connectivity as calculated by
Eq. 28, plotted against fracture
density as defined by Eq. 13.
The measurement data and prior
distribution parameters are given
by Table 1, case 1
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In comparison, Fig. 3b shows the value of f when
fracture parameters are used as primary variables. In this
case, reservoir parameters are calculated from the fracture
parameters using Eqs. 10–12, which trivially leads to f = 1
for all samples.

4.2 Exact, linear upscaling model

An alternative choice of inversion variables is the logarithm
of the upscaled parameters, which is often used to ensure
that the reservoir parameters stay positive. Figure 3c shows
the calculated value of f in this case. Figure 3d shows the
corresponding results when the logarithm of the fracture
parameters are used as inversion variables.

Interestingly, the ES and RML now correctly predicts
f = 1 for either choice of inversion variables. To see why
this happens, note that both methods are invariant under a
linear change of variables, which can be verified by inspect-
ing Eqs. 23 and 26, respectively. Furthermore, the change
from fracture parameters to reservoir parameters is linear if
the logarithm transform is used, which is verified by taking
the logarithm of Eqs. 10–12.

If the logarithm of reservoir parameters are used as inver-
sion variables, the structure of the fracture model is retained
as linear correlations within the prior distribution, which
is preserved by the ES and RML during inversion. The
posterior distribution is therefore fully consistent with the
original fracture model.

4.3 Exact upscaling model with finite fractures

Many fracture systems cannot be modeled as fully con-
nected. In case 2, fractures are assumed to have a radius
of 5 m, in which case connectivity is a function of fracture
density as described by Eq. 8. The relation between fracture
parameters and reservoir parameters is therefore nonlinear
even if the logarithm transform is used.

Figure 4a shows the posterior connectivity when the
inversion variables are the pure reservoir parameters, with
no logarithm transform. The rejection method predicts a
strict, weakly nonlinear relationship between fracture den-
sity and connectivity in the posterior distribution, which is
consistent with the original connectivity model (8). The ES
and RML methods significantly overestimate the connectiv-
ity, and there is a high variability within the results.

In comparison, Fig. 4b shows the posterior connectivity
when the logarithm transform is used. The ES and RML
methods predict a strong linear correlation in this case,
which is very close to the true result. The example shows
that the logarithm of reservoir parameters may be an ade-
quate choice of inversion variables, even for a realistic
nonlinear density/connectivity model.

The picture changes slightly if we have a larger uncer-
tainty in the model. In case 3, the prior distribution include
a few models where the fracture density is close to the per-
colation threshold, and the uncertainty of the permeability
measurement is large. This magnitude of uncertainty may

Fig. 4 Posterior fracture
connectivity as calculated by
Eq. 28, plotted against fracture
density as defined by Eq. 13.
The measurement data and prior
distribution parameters are given
by Table 1
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resemble a grid block conditioned to a hydraulic well test
some distance away.

Since the prior distribution might contain zero permeabil-
ity values below the percolation threshold, we can not use
the logarithm transform directly. Instead, we use the variable
log (K + 1), where the fracture permeability K is measured
in millidarcy. For the porosity φ and transfer coefficient σ ,
we still use the logarithm directly.

Figure 4c shows samples from the resulting posterior dis-
tribution. The deviation from the rejection method is larger
in this case, indicating a significant departure from the origi-
nal fracture model. The example shows that the nonlinearity
of the upscaling step may be more dominating if the prior
uncertainty and data noise is high.

In contrast, by using fracture parameters as inversion
variables, consistency with the fracture model is preserved
regardless of the inversion method and the nonlinearity of
the upscaling model. The resulting posterior connectivity
distribution is shown in Fig. 4d.

4.4 Uncertain upscaling models

In the presence of upscaling errors, weak deviations from
the fracture model may be interpreted as imperfections in
the model. Cases 4 and 5 are similar to cases 2 and 3, except
that an upscaling error of 10 % has been added. This implies
that there is a strong, but not perfect nonlinear correlation
between fracture density and connectivity.

Figure 5 shows some of the results for cases 4 and 5. The
rejection method correctly predicts a scattered distribution
within a restricted area, reflecting that the relation between
fracture density and connectivity is uncertain. In Fig. 5a, the
relation between fracture parameters and reservoir parame-
ters is highly nonlinear, since the logarithm transform is not
used. The posterior distributions obtained from the ES and
RML methods in this case deviate strongly from the original
connectivity model (8), and extend beyond the range pre-
dicted by the rejection method. Thus, the deviations are too
large to be interpreted as upscaling uncertainties.

In Fig. 5b, the logarithm of the reservoir parameters
are used as inversion variables. The nonlinearity is greatly
reduced, and the upscaling error dominates the deviations
from the connectivity model.

Posterior connectivity results for case 5 are shown in
Figure 5c, d, where the inversion variables are logarithmic
reservoir and logarithmic fracture parameters, respectively.
Compared with case 4, the prior distribution is broader and
the measurement uncertainty is larger, which leads to a
more nonlinear relationship between fracture and reservoir
parameters. In Fig. 5c, the connectivity obtained from the
ES and RML deviate significantly from the reference solu-
tion provided by the rejection method. This indicates that
the deviations cannot be interpreted as imperfections in the
upscaling model.

Consistency with the fracture model can always be pre-
served by using fracture parameters as inversion variables.

Fig. 5 Posterior fracture
connectivity as calculated by
Eq. 28, plotted against fracture
density as defined by Eq. 13.
The measurement data and prior
distribution parameters are given
by Table 1
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Fig. 6 The apparent upscaling
error in the posterior
distribution, as calculated by
Eq. 15. Each histogram
summarizes the value of δ for 10
000 posterior samples. The area
under each curve is equal to 1.
The measurement data and prior
distribution parameters are given
by Table 1

This is demonstrated in Fig. 5d, where the permeability
measurement of case 5 is assimilated by history matching
the fracture parameters directly. The resulting distribution
agrees with the rejection method and is consistent with a
10 % spread around the connectivity model (8).

Another way of visualizing the results from cases 4 to
5 is provided by Fig. 6. The figure presents histograms for
the apparent upscaling error δ, as given by Eq. 15, which

measures the deviation from the fracture model in the pos-
terior distribution. Each histogram summarizes the value of
δ for 10 000 posterior samples. The histograms are normal-
ized by their area, i.e., the area under each curve is equal
to 1.

Figure 6 shows the same patterns as Fig. 5. The rejection
method always give parameter combinations that deviate
less than 10 % from the connectivity model, as it should. For

Fig. 7 Results from the two-dimensional test case described in
Table 2. The inversion method is multiple data assimilation, Eq. 25,
with four iterations. An ensemble of 100 samples is used, one of the
prior samples is used as the true model. Similar results are obtained
when using other samples as the true model. The assimilated data are

the volume production rate, injection pressure, and water cut, mea-
sured at 10 equally spaced intervals. The measurement noise for the
three data types is gaussian with standard deviations 10 bar, 5 % and 1
m3/day, respectively
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the ES and RML methods, the results depend on the choice
of inversion variables. In Fig. 6a, c, where the upscaling
model is highly nonlinear, the deviation from the frac-
ture model is larger than the upscaling uncertainty for a
significant portion of the posterior samples.

In contrast, the upscaling model in Fig. 6b is only weakly
nonlinear, and the results for the RML and ES methods are
in close harmony with the rejection method. Finally, Fig. 6d
shows the results for case 5 when the logarithm of fracture
parameters are used as inversion variables. In this case, a
fracture description of the reservoir is obtained directly, and
the value of δ does not exceed the limit of 10 % defined by
the prior distribution.

4.5 A simple 2D example with prediction

The ultimate goal of history matching is to improve the pre-
dictive power of the reservoir model. In general, a model
that contains geologically unrealistic features may have sub-
optimal predictive capabilities, even if it matches production
history. It is therefore natural to assume that history matched
reservoir models which are also consistent with the underly-
ing fracture model, may have an advantage when predicting
future events.

Being consistent with the fracture model may not be
important in all applications, however. The consequences of
predicting from a fracture-inconsistent model depend on the
data to be predicted, and their sensitivity to model param-
eters. An example is shown in Fig. 7, where a synthetic

Table 2 Simulation data for the quarter five spot test case

Physical dimensions 200 m × 200 m × 10 m

Grid resolution 10 × 10 × 1

Injection rate 50 m3/day

Prod. well pressure 200 bar

Fluid and rock compr. 10−4 bar−1

Relative permeabilitya krw = S, kro = 1 − S

Matrix cap. pressurea 1−S
1+S × 0.5 bar

Matrix porosity 0.3

Matrix permeability 1 mD

Logarithm of fracture μ = log 0.2, σ = log 2

aperture, in mmb

Logarithm of fracture μ = log 0.5, σ = log 2

density, in m−1b

Spatial correlation of Gaussian, correlation

fracture parameters length =100 m

The model contains one rate-controlled water injection well and
one pressure-controlled production well, placed at opposing corners.
Fracture capillary pressure is zero
aWater saturation: S
bNormally distributed with mean μ and variance σ 2

(quarter five spot), water-wet oil reservoir is history
matched against water cut, bottom hole pressure and liq-
uid production rate. The model specifications are given in
Table 2. From Fig. 7a, we see that the posterior ensemble is
not consistent with the fracture upscaling model unless frac-
ture parameters are history matched directly. Nevertheless,
Fig. 7b, c shows that the predicted future water cut is very
similar for both choices of inversion variables.

Part of the reason is that the water cut has very little
sensitivity to fracture porosity, since most of the injected
water migrates to the water-wet rock matrix. Thus, fracture
porosity largely becomes a redundant parameter, and the
reservoir model is predictive even though fracture porosity
is not correctly estimated.

5 Summary and discussion

In this paper, we have shown that common history matching
methods may generate reservoir models that are incon-
sistent with the underlying fracture model, meaning that
the reservoir parameters (permeability, porosity and trans-
fer coefficient) does not correspond to a physically valid
combination of fracture parameters (aperture, density and
fracture size).

We have demonstrated that significant deviations from
the fracture model can occur for the ensemble smoother
(ES) and the randomized maximum likelihood (RML)
methods, if the relation between the inversion variables
and the fracture parameters is nonlinear. It is expected that
similar deviations would occur with other ensemble- or
optimization-based history matching methods.

The problem can easily be avoided by using frac-
ture parameters as inversion variables. With this choice,
a fracture-oriented description of the reservoir is obtained
directly. The approach requires fracture upscaling to be
included in the history matching loop, but the added com-
putational cost is negligible if analytical upscaling is used.

To quantify deviations from the fracture model, we
employed an invertible analytical upscaling scheme, which
enabled us to convert reservoir parameters to the closest
matching set of fracture parameters. Interestingly, devia-
tions from the fracture model were much smaller if the
logarithm of the reservoir parameters were used as inversion
variables, compared with using the reservoir parameters
directly. The reason is that the logarithm transform strongly
reduced the nonlinearity of the fracture upscaling function.
For fully connected fracture networks, logarithmic reser-
voir parameters gave just as good results as using fracture
parameters as inversion variables.

Our numerical examples also demonstrated that moderate
deviations from the fracture model may be acceptable if the
upscaling method is uncertain. In this case, deviations from
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the fracture model may be interpreted as inaccuracies in the
upscaling method.

The importance of having a reservoir description that is
consistent with the fracture model depends on the specific
application. Our numerical examples include a simple his-
tory matching case with a quarter five spot reservoir model,
where consistency with the fracture model does not seem to
give a clear predictive advantage.

Consistency with the fracture model is likely to be more
important if the assimilated and predicted data are of differ-
ent types. Examples include the prediction of water cut from
a dual porosity well test or the prediction of heat transfer rate
from a tracer test in a geothermal reservoir. In these appli-
cations, the data to be predicted are indirectly coupled to
the assimilated data through the fracture model. Thus, keep-
ing the parameters consistent with a fracture description of
the reservoir could potentially improve the predictive power
of the model. The same argument applies to joint inversion
applications, such as joint inversion of seismic and electro-
magnetic data, where fracture parameters may be a natural
common set of parameters linking the two data types. An
investigation of these issues is, however, beyond the scope
of this paper.

In cases where consistency with the fracture model is
important, fracture parameters should be used as inversion
variables. This choice allows one to directly constrain and
correlate the fracture density, aperture, and connectivity
through a prior distribution or a penalty term, in accor-
dance with prior geological knowledge. If upscaled reser-
voir parameters are used as inversion variables, the inversion
methods may generate history matched models that does not
correspond to physically valid fracture parameters.
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