86 research outputs found

    Domain randomization using synthetic electrocardiograms for training neural networks

    Get PDF
    We present a method for training neural networks with synthetic electrocardiograms that mimic signals produced by a wearable single lead electrocardiogram monitor. We use domain randomization where the synthetic signal properties such as the waveform shape, RR-intervals and noise are varied for every training example. Models trained with synthetic data are compared to their counterparts trained with real data. Detection of r-waves in electrocardiograms recorded during different physical activities and in atrial fibrillation is used to assess the performance. By allowing the randomization of the synthetic signals to increase beyond what is typically observed in the real-world data the performance is on par or superseding the performance of networks trained with real data. Experiments show robust model performance using different seeds and on different unseen test sets that were fully separated from the training phase. The ability of the model to generalize well to hidden test sets without any specific tuning provides a simple and explainable alternative to more complex adversarial domain adaptation methods for model generalization. This method opens up the possibility of extending the use of synthetic data towards domain insensitive cardiac disease classification when disease specific a priori information is used in the electrocardiogram generation. Additionally, the method provides training with free-to-collect data with accurate labels, control of the data distribution eliminating class imbalances that are typically observed in health-related data, and the generated data is inherently private

    Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs

    Get PDF
    A highly flexible, stretchable, and mechanically robust low-cost soft composite consisting of silicone polymers and water (or hydrogels) is reported. When combined with conventional acoustic transducers, the materials reported enable high performance real-time monitoring of heart and respiratory patterns over layers of clothing (or furry skin of animals) without the need for direct contact with the skin. The approach enables an entirely new method of fabrication that involves encapsulation of water and hydrogels with silicones and exploits the ability of sound waves to travel through the body. The system proposed outperforms commercial, metal-based stethoscopes for the auscultation of the heart when worn over clothing and is less susceptible to motion artefacts. The system both with human and furry animal subjects (i.e., dogs), primarily focusing on monitoring the heart, is tested; however, initial results on monitoring breathing are also presented. This work is especially important because it is the first demonstration of a stretchable sensor that is suitable for use with furry animals and does not require shaving of the animal for data acquisition

    Low-Cost Chemical Sensing Platform With Organic Polymer Functionalization

    Get PDF
    The characteristics of an inexpensive transistor-based chemical sensing platforms with organic polymer, polyaniline (PANI), was investigated in terms of tranconductance, pH sensitivity, and drift properties. The platform consists of a printed circuit board manufactured in a standard manufacturing process and commercial discrete MOSFETs. The platform is funtionalized with PANI by a simple low-cost drop casting. The platform shows low average pH sensitivity of 9.1 mV/pH in the range 4-7 where physiological recognition events take place and as such is a promising candidate for intrinsic charge-based biosensing since PANI is able to directly interact with charged macromolecules such as proteins and DNA. In addition, the PANI functionalized sensors show low nonmonotonic drift and only slightly reduced transconductance compared with the MOSFET counterpart.</p

    Acupuncture for dry eye syndrome after refractive surgery: study protocol for a randomized controlled trial

    Get PDF
    Agile software development is increasingly adopted by companies evolving and maintaining software products to support better planning and tracking the realization of user stories and features. While convincing success stories help to further spread the adoption of Agile, mechatronics-driven companies need guidance to implement Agile for non-software teams. In this comparative case study of three companies from the Nordic region, we systematically investigate expectations and challenges from scaling Agile in organizations dealing with mechatronics development by conducting on-site workshops and surveys. Our findings show that all companies have already successfully implemented Agile in their software teams. The expected main benefit of successfully scaling agile development is a faster time-to-market product development; however, the two main challenges are: (a) An inflexible test environment that inhibits fast feedback to changed or added features, and (b) the existing organizational structure including the company\u27s mind-set that needs to be opened-up for agile principles

    Sleep During Menopausal Transition: A 10-year Follow-Up

    Get PDF
    Study ObjectivesA 10-year observational follow-up study to evaluate the changes in sleep architecture during the menopausal transition.MethodsFifty-seven premenopausal women (mean age 46 years, SD 0.9) were studied at baseline and after a 10-year follow-up. At both time points, polysomnography (PSG) was performed, and the serum follicle-stimulating hormone (S-FSH) concentration was measured. Linear regression models were used to study the effects of aging and menopause (assessed as change in S-FSH) on sleep.ResultsAfter controlling for body mass index, vasomotor, and depressive symptoms, higher S-FSH level was associated with longer sleep latency (B 0.45, 95% confidence interval [CI]: 0.07 to 0.83). Aging of 10 years was associated with shorter sleep latency (B −46.8, 95% CI: −77.2 to −16.4), shorter latency to stage 2 sleep (B −50.6, 95% CI: −85.3 to −15.9), decreased stage 2 sleep (B −12.4, 95% CI: −21.4 to −3.4), and increased slow-wave sleep (B 12.8, 95% CI: 2.32 to 23.3) after controlling for confounding factors.ConclusionsThis study suggests that PSG measured sleep of middle-aged women does not worsen over a 10-year time span due to the menopausal transition. The observed changes seem to be rather age- than menopause-dependent

    The influence of dexmedetomidine and propofol on circulating cytokine levels in healthy subjects

    Get PDF
    Background:Surgery and diseases modify inflammatory responses and the immune system. Anesthetic agents also have effects on the human immune system but the responses they induce may be altered or masked by the surgical procedures or underlying illnesses. The aim of this study was to assess how single-drug dexmedetomidine and propofol anesthesia without any surgical intervention alter acute immunological biomarkers in healthy subjects. Methods:Thirty-five healthy, young male subjects were anesthetized using increasing concentrations of dexmedetomidine (n = 18) or propofol (n = 17) until loss of responsiveness (LOR) was detected. The treatment allocation was randomized. Multi-parametric immunoassays for the detection of 48 cytokines, chemokines and growth factors were used. Concentrations were determined at baseline and at the highest drug concentration foreach subject. Results: The changes in the concentration of eotaxin (decrease after dexmedetomidine) and platelet-derived growth factor (PDGF, increase after propofol) were statistically significantly different between the groups. Significant changes were detected within both groups; the concentrations of monocyte chemotactic protein 1, chemokine ligand 27 and macrophage migration inhibitory factor were lower in both groups after the drug administration. Dexmedetomidine decreased the concentration of eotaxin, interleukin-18, interleukin-2Rα, stem cell factor, stem cell growth factor and vascular endothelial growth factor, and propofol decreased significantly the levels of hepatocyte growth factor, IFN-γ-induced protein 10 and monokine induced by IFN-γ, and increased the levels of interleukin-17, interleukin-5, interleukin-7 and PDGF. Conclusions:Dexmedetomidine seemed to have an immunosuppressive effect on the immune system whereas propofol seemed to induce mixed pro- and anti-inflammatory effects on the immune system. The choice of anesthetic agent could be relevant when treating patients with compromised immunological defense mechanisms. Trial registration: Before subject enrollment, the study was registered in the European Clinical Trials database(EudraCT number 2013–001496-21, The Neural Mechanisms of Anesthesia and Human Consciousness) and in ClinicalTrials.gov (Principal Investigator: Harry Scheinin, number NCT01889004, The Neural Mechanisms of Anesthesia and Human Consciousness, Part 2, on the 23rd of June 2013).</p

    Disposable silicon-based all-in-one micro-qPCR for rapid on-site detection of pathogens

    Get PDF
    cycle. Using TriSilix, we also detect the cDNA from SARS-CoV-2 (1 pg) with high specificity against SARS-CoV (2003)

    Dreaming and awareness during dexmedetomidine- and propofol-induced unresponsiveness

    Get PDF
    Background: Experiences during anaesthetic-induced unresponsiveness have previously been investigated by interviews after recovery. To explore whether experiences occur during drug administration, we interviewed participants during target-controlled infusion (TCI) of dexmedetomidine or propofol and after recovery.Methods: Healthy participants received dexmedetomidine (n = 23) or propofol (n = 24) in stepwise increments until loss of responsiveness (LOR1). During TCI we attempted to arouse them for interview (return of responsiveness, ROR1). After the interview, if unresponsiveness ensued with the same dose (LOR2), the procedure was repeated (ROR2). Finally, the concentration was increased 1.5-fold to achieve presumable loss of consciousness (LOC), infusion terminated, and the participants interviewed upon recovery (ROR3). An emotional sound stimulus was presented during LORs and LOC, and memory for stimuli was assessed with recognition task after recovery. Interview transcripts were content analysed.Results: Of participants receiving dexmedetomidine, 18/23 were arousable from LOR1 and LOR2. Of participants receiving propofol, 10/24 were arousable from LOR1 and two of four were arousable from LOR2. Of 93 interviews performed, 84% included experiences from periods of unresponsiveness (dexmedetomidine 90%, propofol 74%). Internally generated experiences (dreaming) were present in 86% of reports from unresponsive periods, while externally generated experiences (awareness) were rare and linked to brief arousals. No within drug differences in the prevalence or content of experiences during infusion vs after recovery were observed, but participants receiving dexmedetomidine reported dreaming and awareness more often. Participants receiving dexmedetomidine recognised the emotional sounds better than participants receiving propofol (42% vs 15%), but none reported references to sounds spontaneously.Conclusion: Anaesthetic-induced unresponsiveness does not induce unconsciousness or necessarily even disconnectedness.</p

    The effect of general anaesthetics on brain lactate release

    Get PDF
    The effects of anaesthetic agents on brain energy metabolism may explain their shared neurophysiological actions but remain poorly understood. The brain lactate shuttle hypothesis proposes that lactate, provided by astrocytes, is an important neuronal energy substrate. Here we tested the hypothesis that anaesthetic agents impair the brain lactate shuttle by interfering with astrocytic glycolysis. Lactate biosensors were used to record changes in lactate release by adult rat brainstem and cortical slices in response to thiopental, propofol and etomidate. Changes in cytosolic nicotinamide adenine dinucleotide reduced (NADH) and oxidized (NAD+) ratio as a measure of glycolytic rate were recorded in cultured astrocytes. It was found that in brainstem slices thiopental, propofol and etomidate reduced lactate release by 7.4 ± 3.6% (P < 0.001), 9.7 ± 6.6% (P < 0.001) and 8.0 ± 7.8% (P = 0.04), respectively. In cortical slices, thiopental reduced lactate release by 8.2 ± 5.6% (P = 0.002) and propofol by 6.0 ± 4.5% (P = 0.009). Lactate release in cortical slices measured during the light phase (period of sleep/low activity) was ~25% lower than that measured during the dark phase (period of wakefulness) (326 ± 83 μM vs 430 ± 118 μM, n = 10; P = 0.04). Thiopental and etomidate induced proportionally similar decreases in cytosolic [NADH]:[NAD+] ratio in astrocytes, indicative of a reduction in glycolytic rate. These data suggest that anaesthetic agents inhibit astrocytic glycolysis and reduce the level of extracellular lactate in the brain. Similar reductions in brain lactate release occur during natural state of sleep, suggesting that general anaesthesia may recapitulate some of the effects of sleep on brain energy metabolism

    Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity

    Get PDF
    Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity
    • …
    corecore