292 research outputs found

    KITD816V+ systemic mastocytosis associated with KITD816V+ acute erythroid leukaemia: first case report with molecular evidence for same progenitor cell derivation

    Get PDF
    Toll-like receptor (TLR)-9 recognizes CpG motifs in microbial DNA. TLR9 signalling stimulates innate antimicrobial immunity and modulates adaptive immune responses including autoimmunity against chromatin, e.g., in systemic lupus erythematosus (SLE). This review summarizes the available data for a role of TLR9 signalling in lupus and discusses the following questions that arise from these observations: 1) Is CpG-DNA/TLR9 interaction involved in infection-induced disease activity of lupus? 2) What are the risks of CpG motifs in vaccine adjuvants for lupus patients? 3) Is TLR9 signalling involved in the pathogenesis of lupus by recognizing self DNA

    Interatomic Coulombic Decay following Photoionization of the Helium Dimer: Observation of Vibrational Structure

    Get PDF
    Using synchrotron radiation we simultaneously ionize and excite one helium atom of a helium dimer (He_2) in a shakeup process. The populated states of the dimer ion (i.e. He^[*+](n = 2; 3)-He) are found to deexcite via interatomic coulombic decay. This leads to the emission of a second electron from the neutral site and a subsequent coulomb explosion. In this letter we present a measurement of the momenta of fragments that are created during this reaction. The electron energy distribution and the kinetic energy release of the two He^+ ions show pronounced oscillations which we attribute to the structure of the vibrational wave function of the dimer ion.Comment: 8 pages, 5 figure

    Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2

    Get PDF
    The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement with quantum calculations.Comment: 5 pages, 3 figures, accepted by PRL on July 11th, 201

    Single photon double ionization of the helium dimer

    Full text link
    We show that a single photon can ionize the two helium atoms of the helium dimer in a distance up to 10 {\deg}A. The energy sharing among the electrons, the angular distributions of the ions and electrons as well as comparison with electron impact data for helium atoms suggest a knock-off type double ionization process. The Coulomb explosion imaging of He_2 provides a direct view of the nuclear wave function of this by far most extended and most diffuse of all naturally existing molecules.Comment: 10 pages, 5 figure

    Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Get PDF
    Citation: Boll, R., Erk, B., Coffee, R., Trippel, S., Kierspel, T., Bomme, C., . . . Rudenko, A. (2016). Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 3(4). doi:10.1063/1.4944344Additional Authors: Marchenko, T.;Miron, C.;Patanen, M.;Osipov, T.;Schorb, S.;Simon, M.;Swiggers, M.;Techert, S.;Ueda, K.;Bostedt, C.;Rolles, D.;Rudenko, A.Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. © 2016 Author(s)

    Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments

    Get PDF
    The ionization and fragmentation dynamics of iodine molecules (I-2) are traced using very intense (similar to 10(14) W cm(-2)) ultra-short (similar to 60 fs) light pulses with 87 eV photons of the Free-electron LASer at Hamburg (FLASH) in combination with a synchronized femtosecond optical laser. Within a pump-probe scheme the IR pulse initiates a molecular fragmentation and then, after an adjustable time delay, the system is exposed to an intense FEL pulse. This way we follow the creation of highly-charged molecular fragments as a function of time, and probe the dynamics of multi-photon absorption during the transition from a molecule to individual atoms

    Watching the acetylene vinylidene intramolecular reaction in real time

    Full text link
    It is a long-standing dream of scientists to capture the ultra-fast dynamics of molecular or chemical reactions in real time and to make a molecular movie. With free-electron lasers delivering extreme ultraviolet (XUV) light at unprecedented intensities, in combination with pump-probe schemes, it is now possible to visualize structural changes on the femtosecond time scale in photo-excited molecules. In hydrocarbons the absorption of a single photon may trigger the migration of a hydrogen atom within the molecule. Here, such a reaction was filmed in acetylene molecules (C2H2) showing a partial migration of one of the protons along the carbon backbone which is consistent with dynamics calculations on ab initio potential energy surfaces. Our approach opens attractive perspectives and potential applications for a large variety of XUV-induced ultra-fast phenomena in molecules relevant to physics, chemistry, and biology.Comment: 21 pages, 3 figures, submitte

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    Influence of pump laser fluence on ultrafast structural changes in myoglobin

    Get PDF
    High-intensity femtosecond pulses from an X-ray free-electron laser enable pump probe experiments for investigating electronic and nuclear changes during light-induced reactions. On time scales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer. However, all ultra-fast TR-SFX studies to date have employed such high pump laser energies that several photons were nominally absorbed per chromophore. As multiphoton absorption may force the protein response into nonphysiological pathways, it is of great concern whether this experimental approach allows valid inferences to be drawn vis-a-vis biologically relevant single-photon-induced reactions. Here we describe ultrafast pump-probe SFX experiments on photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics) are seen to depend strongly on pump laser energy. Our results confirm both the feasibility and necessity of performing TR-SFX pump probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing design and interpretation of ultrafast TR-SFX pump probe experiments such that biologically relevant insight emerges

    Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    Get PDF
    Citation: Tanyag, R. M. P., Bernando, C., Jones, C. F., Bacellar, C., Ferguson, K. R., Anielski, D., . . . Vilesov, A. F. (2015). Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. Structural Dynamics, 2(5), 9. doi:10.1063/1.4933297Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.Additional Authors: Neumark, D. M.;Rolles, D.;Rudek, B.;Rudenko, A.;Siefermann, K. R.;Ullrich, J.;Weise, F.;Bostedt, C.;Gessner, O.;Vilesov, A. F
    corecore